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Introduction

Here you’ll find some notes that I wrote up as I worked through this excellent book. I’ve
worked hard to make these notes as good as I can, but I have no illusions that they are perfect.
If you feel that that there is a better way to accomplish or explain an exercise or derivation
presented in these notes; or that one or more of the explanations is unclear, incomplete,
or misleading, please tell me. If you find an error of any kind – technical, grammatical,
typographical, whatever – please tell me that, too. I’ll gladly add to the acknowledgments
in later printings the name of the first person to bring each problem to my attention.

∗wax@alum.mit.edu
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The Random Behavior of Assets

Notes on time-scaling returns

When we have prices sampled at fixed times, Si, the discrete model proposed for their returns
Ri is

Ri =
Si+1 − Si

Si
= mean + standard deviation× φ , (1)

where φ is a random draw from a standard Gaussian distribution (mean zero and variance
one). We will call these mean and standard deviation estimates the measured estimates,
since they explicitly depend on using the measured prices Si for their estimation. They
also correspond to a mean and standard deviation of the returns over the length of time
represented by the amount of time between the prices Si+1 and Si or ti+1 − ti. The question
we then pose is: given the measured parameters mean and standard deviation how do we
modify these in the case we are interested in the mean return and the standard deviation
or the return for timescales different than the measurement time scales. Let µ and σ be the
numerical values of these quantities for returns over the desired timestep length, which we
will take to be Ti+1 − Ti. To express this difference in timescales the book defines δt which
is given by

δt ≡ ti+1 − ti
Ti+1 − Ti

. (2)

Note that the above fraction must be dimensionless, that is if the measurement timescales
is in days ti+1 − ti = 1day and the desired timescale is in years Ti+1 − Ti = 1 year, then the
value of δt should be

δt =
1day

1 year
=

1 day

252 day
,

since there are 252 trading days in one year. Thus if the desired timescale is over longer
a longer amount of time (where Ti+1 − Ti > ti+1 − ti) we expect δt < 1 and if it is over a
shorter amount of time we expect δt > 1. Given this definition then we have that the mean
return we want µ is given by

µ = mean

(

Ti+1 − Ti
ti+1 − ti

)

=
mean

δt
. (3)

This is the expression that shows how we scale the mean returns from one timescale to
another. The standard deviation is scaled in a similar manner. If σ is the standard deviation
over the timescale of interest we have

σ =
standard deviation

δt1/2
. (4)

This is the expression that shows how we scale the standard deviation of returns from one
timescale to another. Two simple examples will make this clear. Using the data from the
book we assume that we measure daily returns (using daily prices) and have

mean = 0.002916

standard deviation = 0.024521 .

Then we want to compute
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• The yearly mean and standard deviation of returns. In that case, as we talked about
above we have

δt =
1

252
= 0.00396 .

Thus using Equations 3 and 4 we get

µ = 0.7348 and σ = 0.389242 .

• The hourly mean and standard deviation of returns. In that case we have

δt =
1day

1 hour
=

6.5 hours

1 hours
= 6.5 .

Then using Equations 3 and 4 we get

µ = 0.0004486 and σ = 0.009617 .

Typically we measure the returns over a daily timescale and then report yearly values for µ
and σ. In that case if we want statistics for returns over a shorter time period (less than a
year) then δt is what fraction of the longer time length the short time length is. For example,
in going from the annual mean rate of return µyearly and standard deviation σyearly to a

daily rate of return and uncertainty we scale by the appropriate fraction

µdaily =

(

1

252

)

µyearly

σdaily =

(

1

252

)1/2

σyearly .

Using these scalings, δt in the return model gives us

Ri =
Si+1 − Si

Si
= µδt+ σφδt1/2 , (5)

where φ is a draw from a standard normal random variable. Solving for Si+1 we get

Si+1 − Si = µSiδt+ σSiφδt
1/2 . (6)

Notes on exponentially weighted volatility estimation

From the definition of the exponentially weighted estimate of σ2
i given by

σ2
i =

(

1− λ

δt

) i
∑

j=−∞
λi−jR2

j , (7)

we can write

σ2
i =

(

1− λ

δt

)

λ

i
∑

j=−∞
λi−1−jR2

j =

(

1− λ

δt

)

λ

[

i−1
∑

j=−∞
λi−1−jR2

j + λ−1R2
i

]

=

(

1− λ

δt

)

λ

[(

δt

1− λ

)

σ2
i−1 + λ−1R2

i

]

= λσ2
i−1 +

(

1− λ

δt

)

R2
i , (8)
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which is a recursive expression for exponentially weighted volatility estimation. If we com-
pute Ri using daily prices and we want σ to be in units of yearly volatility then δt = 1

252
. If

you want σ to be an estimate of daily volatility then δt = 1.
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Elementary Stochastic Calculus

Notes on the mean square limit

To evaluate the expectation after we expand the square of
∑n

j=1(X(tj)−X(tj−1))
2 − t, we

need to count how many terms we have in the double sum

n
∑

i=1

i−1
∑

j=1

(X(ti)−X(ti−1))
2(X(tj)−X(tj−1))

2 .

We can do this simply as

n
∑

i=1

i−1
∑

i=1

1 =
n
∑

i=1

(i− 1) =
n
∑

i=1

i−
n
∑

i=1

1 =
1

2
n(n + 1)− n =

1

2
n(n− 1) .

Notes on functions of stochastic variables and Ito’s lemma

From the definition of a stochastic integral we have an expression like

W (t) =

∫ t

0

f(τ)dX(τ) = lim
n→∞

n
∑

j=1

f(tj−1)(X(tj)−X(tj−1)) , (9)

where tj = j t
n
. When this is expressed as a differential relation we have

dW = f(t)dX .

Thus we expect that sums of differences like X(tj) − X(tj−1) seen in Equation 9 play a
prominent role in obtaining differential relationships. Given this observation and the fact
that we want to evaluate the derivative of F (X) when X is stochastic variable motivates us
to consider the following sum of differences (which we denote S) and where the time points
tj are spaced by h ≡ δx

n

S = [F (X(t+ h))− F (X(t))]

+ [F (X(t+ 2h))− F (X(t+ h))] +

+ [F (X(t+ 3h))− F (X(t+ 2h))] +
...

+ [F (X(t+ (n− 1)h))− F (X(t+ (n− 2)h))]

+ [F (X(t+ nh))− F (X(t+ (n− 1)h))] .

Note that one way to evaluate S is to note that since it is a telescoping sum that all of the
“middle” terms cancel when summed and we are left with

S = F (X(t+ nh))− F (X(t)) = F (X(t+ δt))− F (X(t)) .
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Another way to evaluate S is to use Taylor’s series to expand each difference in the function
F (·) in terms of a difference in terms of the stochastic variable X (shown here for the first)
as

F (X(t+ h))− F (X(t)) = (X(t+ h)−X(t))
dF (X(t))

dX
+

1

2
(X(t+ h)−X(t))2

d2F (X(t))

dX2
.

Then each difference in S above turns into the sum of two terms and we get

S = (X(t+ h)−X(t))
dF (X(t))

dX

+
1

2
(X(t+ h)−X(t))2

d2F (X(t))

dX2

+ (X(t+ 2h)−X(t+ h))
dF (X(t+ h))

dX

+
1

2
(X(t+ 2h)−X(t+ h))2

d2F (X(t+ h))

dX2

...

+ (X(t+ nh)−X(t+ (n− 1)h))
dF (X(t+ (n− 1)h))

dX

+
1

2
(X(t+ nh)−X(t+ (n− 1)h))2

d2F (X(t+ (n− 1)h))

dX2

=

n
∑

j=1

(X(t+ jh)−X(t+ (j − 1)h))
dF (X(t+ (j − 1)h))

dX
(10)

+
1

2

n
∑

j=1

(X(t+ jh)−X(t+ (j − 1)h))2
d2F (X(t+ (j − 1)h))

dX2
. (11)

We consider the two summation terms 10 and 11 above. The first sum above (Equation 10)
is a discrete approximation to

∫ t+δt

t

dF

dX
dX .

For each term in the second sum above (Equation 11), as argued in the text, we evaluate the
second derivatives at the left-most end point X(t), so that it comes out of the summation.
In addition, the quadratic sum that remains is a discrete approximation in the mean squared
sense of

∫ t+δt

t

(dX)2 = δt .

thus we get

F (X(t+ δt))− F (X(t)) =

∫ t+δt

t

dF

dX
(X(τ))dX(τ) +

1

2

∫ t+δt

t

d2F

dX2
(X(t))dτ .

Note that the argument of the first integral is evaluated at τ the variable of integration,
while the argument of the second integral is evaluated at the left most end point t and is a
constant with respect to the variable of integration τ . If we desire to extend this expression
to integration lengths t where we cannot just evaluate d2F

dX2 at the left-hand end point we
need to evaluate this expression at τ rather than t. This gives

F (X(t))− F (X(0)) =

∫ t

0

dF

dX
(X(τ))dX(τ) +

1

2

∫ t

0

d2F

dX2
(X(τ))dτ . (12)
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When we write this using the differential equation shorthand we get

dF =
dF

dX
dX +

1

2

d2F

dX2
dt , (13)

for the stochastic differential equation satisfied by F (X).

Notes on Ito from Taylor

If we have a variable, say S, that changes according to a stochastic dX and a continuous
term dt as

dS = a(S, t)dt+ b(S, t)dX . (14)

If we have a function of S say V (S) then we can derive the expression for dV using Taylor
series and the heuristic dX2 ∼ dt. Performing a two term Taylor expansion of V (S) we have

dV =
dV

dS
dS +

1

2

d2V

dS2
dS2 .

Using the heuristics discussed in the book we find

dS2 = (a(S, t)dt+ b(S, t)dX)2 = a(S, t)2dt2 + 2a(S, t)b(S, t)dtdX + b(S, t)2dX2

= b(S, t)2dt . (15)

So that with this dV becomes

dV =
dV

dS
dS +

1

2
b(S, t)2

d2V

dS2
dt . (16)

We could replace dS with adt + bdX in the above to get an expression in terms of the
Brownian increment dX to get

dV =

(

a(S, t)
dV

dS
+

1

2
b(S, t)2

d2V

dS2

)

dt+ b(S, t)
dV

dS
dX . (17)

As another slight generation if V = V (S, t), so that V depends on the deterministic time t
as well as the stochastic term S then by using Taylor’s series we get

dV =
∂V

∂t
dt+

∂V

∂S
dS +

1

2

∂2V

∂S2
dS2

as in Equation 15 we have dS2 = b2dX2 = b2dt so dV above becomes

dV =
∂V

∂t
dt+

∂V

∂S
dS +

1

2
b(S, t)2

∂2V

∂S2
. (18)
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Notes on Ito in Higher Dimensions

Now Taylor’s series for a function V = V (S1, S2, t) of two variables S1 and S2 (and time t)
would have first derivative terms for S1, S2 and t, second derivatives terms for S1 and S2

and a cross derivative term for S1 and S2, given by

dV =
∂V

∂t
dt

+
∂V

∂S1
dS1 +

1

2

∂2V

∂S2
1

dS2
1

+
∂V

∂S2

dS2 +
1

2

∂2V

∂S2
2

dS2
2

+
∂2V

∂S1∂S2
dS1dS2 .

Now as earlier we consider the heuristics dS=
1 b

2
1dt, dS

2
2 = b22dt, for the squares of the random

terms and

dS1dS2 = (a1dt+ b1dX)(a2dt+ b2dX2) = b1b2dX1dX2 = b1b2ρdt ,

for the cross product. In that case we thus get for dV the following

dV =
∂V

∂t
dt+

∂V

∂S1

dS1 +
∂V

∂S2

dS2 +
1

2
b21
∂2V

∂S1
2dt+ b1b2ρ

∂2V

∂S1∂S2

dt+
1

2
b22
∂2V

∂S2
2dt . (19)

Pertinent Examples: The Lognormal Random Walk

In this case the differential equation for S satisfies

dS = µSdt+ σSdX , (20)

and we will use the heuristics that

dS2 = σ2S2dX2 = σ2S2dt .

If we consider a function F defined as F (S) = log(S) then

dF

dS
=

1

S
and

d2F

dS2
= − 1

S2
,

so using the “Ito from Taylor” idea to compute the differential of this function gives

d(log(S)) = dF =
dF

dS
dS +

1

2

d2F

dS2
dS2

=
1

S
(µSdt+ σSdX) +

1

2

(

− 1

S2

)

σ2S2dt

=

(

µ− 1

2
σ2

)

dt+ σdX .
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From the above expression for d log(S) we can integrate this to get

log(S(t))− log(S(0)) =

(

µ− 1

2
σ2

)

t+ σ(X(t)−X(0)) ,

or solving for S(t) we get

S(t) = S(0)e(µ−
1
2
σ2)t+σ(X(t)−X(0)) . (21)

Since X(t) is a Gaussian process we can write X(t)−X(0) = φ
√
t where φ is a random draw

from a N (0, 1) distribution.

Pertinent Examples: A Mean Reverting Random Walk

In this case lets consider the stochastic differential equation for r given by

dr = (ν − γr)dt+ σdX .

If we let W = r − ξ where ξ is not yet determined. We then have that

dW = dr = (ν − γr)dt+ σdX = (ν − γ(w + ξ))dt+ σdX

= (ν − γξ − γW )dt+ σdX .

Thus if we pick ξ such that ν − γξ = 0 or ξ = ν
γ
then

W = r − ν

γ
,

and
dW = −γWdt+ σdX . (22)

Note the drift term in the above stochastic differential equation is −γWdt and has a W
as a factor while the stochastic term σdX does not have a W factor. This is like a partial
lognormal random walk and is called a Ornstein-Uhlenbeck process. Let I = eγt and consider
d(IW ). We have

d(IW ) = IdW +WdI = eγt(−γWdt + σdX) + γWIdt

= σeγtdX .

This we can integrate from 0 to t to get

IW (t)− IW (0) = σ

∫ t

0

eγsdX(s) .

Multiply by 1
I
= e−γt on both sides to get

W (t) = e−γtW (0) + σe−γt
∫ t

0

eγsdX(s)

= e−γtW (0) + σ

∫ t

0

eγ(s−t)dX(s) . (23)
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We can further simplify this by using integration by parts on the last term to get
∫ t

0

eγ(s−t)dX(s) = eγ(s−t)X(s)
∣

∣

t

s=0
− γ

∫ t

0

eγ(s−t)X(s)ds

= X(t)− e−γtX(0)− γ

∫ t

0

eγ(s−t)X(s)ds .

Since we assume that X(0) = 0 the second term in the above vanishes. Thus we get for
W (t) the following

W (t) = e−γtW (0) + σ

(

X(t)− γ

∫ t

0

eγ(s−t)X(s)ds

)

,

and for r(t) we get

r(t) =W (t) +
ν

γ
=
ν

γ
+ e−γt

(

r(0) +
ν

γ

)

+ σ

(

X(t)− γ

∫ t

0

eγ(s−t)X(s)ds

)

.

Pertinent Examples: Another Mean Reverting Random Walk

In this case r is governed by

dr = (ν − µr)dt+ σr1/2dX ,

then the heuristics we use is dr2 = σ2rdX2 = σ2rdt. When we consider the function F
defined as F = r1/2 we have that

dF

dr
=

1

2
r−1/2 and

d2F

dr2
= −1

4
r−3/2 .

Thus using Ito from Taylor to compute dF gives us

d(r1/2) = dF =
dF

dr
dr +

1

2

d2F

dr2
dr2

=
1

2
r−1/2dr +

1

2

(

−1

4
r−3/2

)

(σ2rdt)

=

(

4ν − σ2

8F
− 1

2
µF

)

dt+
1

2
σdX .

Now the stochastic term is constant (a relatively simple expression) but the coefficient of
the drift term is more complicated. This leads us to consider if we can find a function F (r)
under the same stochastic differential equation for r such that with the help of Ito’s lemma
has a zero drift term for dF . This function F (r) would have

d(r1/2) = dF =
dF

dr
dr +

1

2

d2F

dr2
dr2

=
dF

dr
((ν − µr)dt+ σr1/2dX) +

1

2

d2F

dr2
σ2rdt

=

(

(ν − µr)
dF

dr
+

1

2
σ2r

d2F

dr2

)

dt+ σr1/2
dF

dr
dX .
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Setting the coefficient of dt equal to zero gives

(ν − µr)
dF

dr
+

1

2
σ2r

d2F

dr2
= 0 . (24)

If we introduce the function Y (r) defined by Y (r) = dF
dr

this equation becomes

dY

dr
= −2(ν − µr)

σ2r
Y =

(

− 2ν

σ2r
+

2µ

σ2

)

dr .

Integrating both sides gives

log(Y (r)) = −2ν

σ2
log(r) +

2µ

σ2
r + C ,

for a constant C. Thus solving for Y (r) we get

Y (r) = Ar−
2ν
σ2 e

2µ

σ2 r (25)
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The Black-Scholes Model

Notes on solutions to the Black-Scholes equation

In this section we show that S and ert satisfy the Black-Scholes equation. The Black-Scholes
equation is given by

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 . (26)

For V (S, t) = AS, we can calculated each of the required derivative on the left hand side of
this expression as follows

∂V

∂t
= 0

∂V

∂S
= A

∂2V

∂S2
= 0 .

Thus substituting V = AS into the left hand side of the Black-Scholes equation gives

0 + 0 + rSA− rAs = 0 ,

showing that V = AS is a solution. We note that this solution represents a pure investment
in the underlying. Note that also in this case

∆ =
∂V

∂S
= A .

In the case when V = Aert we again evaluate each derivative in tern and find that

∂V

∂t
= rAert

∂V

∂S
= 0

∂2V

∂S2
= 0 ,

so placing V = Aert into the left hand side of the Black-Scholes equation we obtain

rAert − rAert = 0 ,

proving that V = Aert is a solution. This solution represents an investment in a fixed interest
rate account like a bank account. Note that when V = Aert we have ∆ = 0.
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Notes on options on futures

Here we will transform the Black-Scholes equation in the original variables (t, S) into the
new variables (v, F ) defined in terms of the original variables by

v = t

F = er(TF−t)S .

Note that the above transformation has an inverse given by

t = v

S = Fe−r(TF−t) = Fe−r(TF−v) .

Then the derivatives with respect to (t, S) transform as

∂

∂t
=

∂F

∂t

∂

∂F
+
∂v

∂t

∂

∂v
= −rer(TF−t)S

∂

∂F
+

∂

∂v

= −Fr ∂

∂F
+

∂

∂v
∂

∂S
=

∂F

∂S

∂

∂F
+
∂v

∂S

∂

∂v
= er(TF−t) ∂

∂F

= er(TF−v) ∂

∂F
∂2

∂S2
= e2r(TF−v) ∂

2

∂F 2

Thus we put these two expressions into the Black-Scholes equation for V = V (F, v) we get

−Fr ∂V
∂F

+
∂V
∂v

+
1

2
(σ2F 2e−2r(TF−v))e2r(TF−v) ∂

2V
∂F 2

+ r(Fe−r(TF−v))er(TF−v) ∂V
∂F

− rV = 0 .

When we cancel terms we get

∂V
∂v

+
1

2
σ2F 2 ∂

2V
∂F 2

− rV = 0 ,

the pricing equation for an option on a future.
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Partial Differential Equations

Transformations to a constant coefficient diffusion equation

In this section of these notes we verify the transformations needed to change the Black
Scholes equation into the diffusion equation. As suggested in the book lets define unitless
parameters x, τ , and U in terms of the given financial parameters T , t, S etc. as

S = ex ⇒ x = log(S)

t = T − τ
1
2
σ2

⇒ τ =
1

2
σ2(T − t)

V (S, t) = eαx+βτU(x, t) .

Then with this transformation the derivatives needed in the Black-Scholes equation become

∂

∂t
=

∂τ

∂t

∂

∂τ
+
∂x

∂t

∂

∂x
= −1

2
σ2 ∂

∂τ
∂

∂S
=

∂τ

∂S

∂

∂τ
+
∂x

∂S

∂

∂x
=

1

S

∂

∂x
= e−x

∂

∂x
∂2

∂S2
= e−x

∂

∂x

(

e−x
∂

∂x

)

= −e−2x ∂

∂x
+ e−2x ∂

2

∂x2
.

Using these the derivatives of V in the Black-Scholes Equation 26 becomes

∂V

∂t
= −1

2
σ2 ∂

∂τ
(eαx+βτU) = −1

2
σ2eαx+βτ

(

βU +
∂U

∂τ

)

∂V

∂S
= e−x

∂

∂x
(eαx+βτU) = e(α−1)x+βτ

(

αU +
∂U

∂x

)

∂2V

∂S2
= e−x

∂

∂x

[

e(α−1)x+βτ

(

αU +
∂U

∂x

)]

= e−x
[

(α− 1)e(α−1)x+βτ

(

αU +
∂U

∂x

)

+ e(α−1)x+βτ

(

α
∂U

∂x
+
∂2U

∂x2

)]

= e(α−2)x+βτ

[

α(α− 1)U + (2α− 1)
∂U

∂x
+
∂2U

∂x2

]

.

When we put these expressions into the Black-Scholes Equation 26 we get

−1

2
σ2eαx+βτ

(

βU +
∂U

∂τ

)

+
1

2
σ2eαx+βτ

[

α(α− 1)U + (2α− 1)
∂U

∂x
+
∂2U

∂x2

]

+ reαx+βτ
[

αU +
∂U

∂x

]

− reαx+βτU = 0 .

When we cancel the exponential factor, take the time derivative to one side of the equal sign,
and group terms we get

1

2
σ2∂U

∂τ
=

(

−β
2
σ2 +

1

2
σ2α(α− 1) + rα− r

)

U +

(

1

2
σ2(2α− 1) + r

)

∂U

∂x
+

1

2
σ2∂

2U

∂x2
.
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If we take

α = −1

2

(

2r

σ2
− 1

)

, (27)

then 2α− 1 = − 2r
σ2

and the coefficient of ∂U
∂x

vanishes. With this value for α lets now look at
the coefficient the U term. When we replace α with the above expression and simplify we
get

−β
2
σ2 − 1

8σ2
(2r + σ2)2 .

To make this vanish we must take β given by

β = − 1

4σ4
(2r + σ2)2 = −1

4

(

2r

σ2
+ 1

)2

. (28)

Using this value for β and canceling the common factor of 1
2
σ2 we get the following pure

diffusion equation for U(x, τ)
∂U

∂τ
=
∂2U

∂x2
,

as claimed.

Notes on Similarity Reductions

If we consider the function

u(x, t) =

∫ x/t1/2

0

e−
1
4
ξ2dξ , (29)

we can show that it satisfies ut = uxx. To do this, we compute the needed derivatives.

ut = e−
1
4

x2

t

(

− x

2t3/2

)

ux = e−
1
4

x2

t

(

1

t1/2

)

uxx =
1√
t
e−

1
4

x2

t

(

−1

2

x

t

)

= − x

2t3/2
e−

1
4

x2

t ,

from which we see directly that ut = uxx as claimed.

Let us now look for solutions of a particular form motivated by the form of the above
expression for u(x, t). Consider u ≡ t−1/2f(ξ) where ξ ≡ x

t1/2
. Next we put t−1/2f(ξ) into

ut = uxx, to see what requirements this imposes on the function f(·). To do this we need to
compute ut and uxx. We find

ut = −1

2
t−3/2f(ξ) + t−1/2f ′(ξ)

(

−1

2

x

t3/2

)

= −1

2
t−3/2f(ξ)− 1

2
xt−2f ′(ξ)

ux = t−1/2f ′(ξ)

(

1

t1/2

)

= t−1f ′(ξ)

uxx = t−1f ′′(ξ)

(

1

t1/2

)

= t−3/2f ′′(ξ) .

15



We then put these expressions into the diffusion equation uxx = ut we get

t−3/2f ′′(ξ) = −1

2
t−3/2f(ξ)− 1

2
xt−2f ′(ξ) .

Multiply this equation by t3/2 and remember that ξ = x
t1/2

to get

f ′′(ξ) = −1

2
f(ξ)− 1

2
ξf ′(ξ) . (30)

Note that the right-hand-side of this equation is −1
2
d
dξ
(ξf(ξ)), and so integrating both sides

gives

f ′(ξ) = −1

2
ξf(ξ) + C .

If we take C = 0 (we just want to try and find any solution) we get

f ′(ξ)

f(ξ)
= −1

2
ξ ,

or integrating both sides and solving for f(ξ) gives

f(ξ) = De−
1
4
ξ2 .

If we take D = 1 we have the function f(·) stated in the book. If we next replace ξ with x
t1/2

we see that

u(x, t) = t−1/2e−
1
4

x2

t ,

is a solution to ut = uxx.
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the Black-Scholes formula and the ’greeks’

Derivations of the formula for Calls, Puts, and Simple Digitals

In this section of these notes we perform and verify my understanding of the derivations sug-
gested in simplifying the Black-Scholes equation. Defining V (S, t) as V (S, t) = e−r(T−t)U(S, t)
we have the time derivative of U(S, t) given by

∂V

∂t
= re−r(T−t)U + e−r(T−t)

∂U

∂t
= rV + e−r(T−t)

∂U

∂t
.

When we put this into the Black-Scholes Equation 26 we get

∂U

∂t
+

1

2
σ2S2∂

2U

∂S2
+ rS

∂U

∂S
= 0 .

If we next let τ = T − t then the change in the time derivative from t to τ will introduce a
negative sign and gives

∂U

∂τ
=

1

2
σ2S2∂

2U

∂S2
+ rS

∂U

∂S
.

We next introduce the variable ξ = log(S) so that S = eξ and find that the S derivatives
transform as

∂

∂S
=
∂ξ

∂S

∂

∂ξ
=

1

S

∂

∂ξ
= e−ξ

∂

∂ξ
and

∂2

∂S2
= e−ξ

∂

∂ξ

(

e−ξ
∂

∂ξ

)

= e−2ξ ∂
2

∂ξ2
− e−2ξ ∂

∂ξ
.

With this transformation, the Black-Scholes equation becomes

∂U

∂τ
=

1

2
σ2e2ξ

(

e−2ξ ∂
2U

∂ξ2
− e−2ξ ∂U

∂ξ

)

+ reξ
(

e−ξ
∂U

∂ξ

)

=
1

2
σ2∂

2U

∂ξ2
+

(

r − 1

2
σ2

)

∂U

∂ξ
.

Which is a partial differential equation with constant coefficients. Next lets perform a change
of variables on this equation going from the variables (ξ, τ) to new variables (x, τ ′) defined
as

x = ξ +

(

r − 1

2
σ2

)

τ

τ ′ = τ ,

so that the inverse of this transformation is given by

ξ = x−
(

r − 1

2
σ2

)

τ ′

τ = τ ′ .

17



The derivatives in the old coordinates (ξ, τ) transform to derivatives in the new coordinates
(x, τ ′) using the chain rule as

∂

∂τ
=
∂τ ′

∂τ

∂

∂τ ′
+
∂x

∂τ

∂

∂x
=

∂

∂τ ′
+

(

r − 1

2
σ2

)

∂

∂x

∂

∂ξ
=
∂τ ′

∂ξ

∂

∂τ ′
+
∂x

∂ξ

∂

∂x
=

∂

∂x
,

and our differential equation in the new variables (x, τ ′) is given by

∂U

∂τ ′
+

(

r − 1

2
σ2

)

∂U

∂x
=

1

2
σ2∂

2U

∂x2
+

(

r − 1

2
σ2

)

∂U

∂x
,

or dropping the prime on τ we get

∂U

∂τ
=

1

2
σ2∂

2U

∂x2
. (31)

To solve this equation lets try a solution for U(x, τ) of the form

U(x, τ) = ταf

(

x− x′

τβ

)

. (32)

Then to verify Equation 31 we need to evaluate τ and x derivatives of U . Defining η as

η ≡ x− x′

τβ
, (33)

we find that the derivatives we need of U are

Uτ = ατα−1f(η) + ταf ′(η)

(

−β
(

x− x′

τβ−1

))

= ατα−1f(η)− βταη

τ
f ′(η)

Ux =
τα

τβ
f ′(η)

Uxx =
τα

τ 2β
f ′′(η) .

Thus Equation 31 becomes

1

2
σ2τα−2βf ′′(η) = τα−1 (αf(η)− βηf ′(η)) . (34)

Equating the powers of η on both sides gives α− 2β = α− 1 so that we get

β =
1

2
.

When we require that
∫∞
−∞ U(x, τ ; x′)dx to be independent of τ means that for the functional

form for U(x, τ) we are considering and changing the x integration into one over η means
that

∫ ∞

−∞
ταf

(

x− x′

τβ

)

dx =

∫ ∞

−∞
τα+βf (η) dη ,
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must be independent of τ . This means that α + β = 0 or

α = −β = −1

2
.

Once we have α and β we can put these into Equation 34 to get an equation very similar to
Equation 30 earlier. Following the same algebraic steps following Equation 30 and specifying
the constant D so that the function f(·) over −∞ to +∞ integrates to one, we obtain the
function form for f(η) given by

f(η) =
1√
2π
e−

η2

2σ2 ,

When we put η = x−x′
τ1/2

into the expression for W (x, τ) we finally end with

W (x, τ) =
1√
2πτσ

exp

{

−(x− x′)2

2σ2τ

}

.

Superimposing fundamental solutions W (x, τ) for various values of x′ weighted by the payoff
function Payoff(·), and then transforming back into the original S, t variables gives for the
solution V (S, t) of the Black-Scholes equation

V (S, t) =
e−r(T−t)

σ
√

2π(T − t)

∫ ∞

0

Payoff(S ′)e−[log(S′/S)−(r− 1
2
σ2)(T−t)]2/2σ2(T−t)dS

′

S ′ .

When there is a dividend yield D the r in the expression above becomes r −D or

V (S, t) =
e−r(T−t)

σ
√

2π(T − t)

∫ ∞

0

Payoff(S ′)e−[log(S′/S)−(r−D− 1
2
σ2)(T−t)]2/2σ2(T−t)dS

′

S ′ . (35)

From this point onward in these notes we will try to be consistent (in this chapter at least)
in that we will always include a dividend yield term D in all of our expressions.

Notes on the BS Formula for a European Call

To value a European Call recall that the payoff function in that case is given by

Payoff(S) = max(S −E, 0) ,

and so that when we put this expression into Equation 35, perform the required integrations,
we get

C(S, t) = Se−D(T−t)N(d1)− Ee−r(T−t)N(d2) (36)

d1 ≡ log(S/E) + (r −D + 1
2
σ2)(T − t)

σ
√
T − t

(37)

d2 ≡ log(S/E) + (r −D − 1
2
σ2)(T − t)

σ
√
T − t

(38)

= d1 − σ
√
T − t (39)

N(x) =
1√
2π

∫ x

−∞
e−

1
2
φ2dφ . (40)
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From the definition of N(x) we can see that

N ′(x) =
1√
2π
e−

1
2
x2 and N ′′(x) = −xN ′(x) . (41)

With these results the expression for N ′(d2) is given in terms of N ′(d1) by

N ′(d2) =
1√
2π
e−

1
2
d22 =

1√
2π
e−

1
2
(d1−σ

√
T−t)2 =

1√
2π
e−

1
2
d21 ed1σ

√
T−t e−

1
2
σ2(T−t)

= N ′(d1)e
d1σ

√
T−t e−

1
2
σ2(T−t) = N ′(d1)e

log(S/E)+(r−D+ 1
2
σ2)(T−t) e−

1
2
σ2(T−t)

=
S

E
N ′(d1)e

(r−D)(T−t) . (42)

Notes on the BS Formula for a European Put

Since we know the analytical expression for a European call we can use Put-Call parity to
derive the analytic expression for a European put. From Put-Call parity we have that

C − P = Se−D(T−t) − Ee−r(T−t) , (43)

which when we put in the known expression for C(S, t) and solve for P (S, t) we find

P (S, t) = Se−D(T−t)(N(d1)− 1)− Ee−r(T−t)(N(d2)− 1)

= −Se−D(T−t)N(−d1) + Ee−r(T−t)N(−d2) , (44)

where we have used the fact that

N(d) +N(−d) = 1 . (45)

Notes on the BS Formula for a Binary Calls and Puts

If our payoff Payoff(S) is a step function at the strike E i.e. Payoff(S) = H(S−E), where H
is the Heaviside function, then from the general expression for the evaluation of the option
price above in Equation 35 we see that

V (S, t) =
e−r(T−t)

σ
√

2π(T − t)

∫ ∞

0

H(S ′ − E)e−[log(S′/S)−(r−D− 1
2
σ2)(T−t)]2/2σ2(T−t) dS

′

S ′

=
e−r(T−t)

σ
√

2π(T − t)

∫ ∞

E

e−[log(S′/S)−(r−D− 1
2
σ2)(T−t)]2/2σ2(T−t) dS

′

S ′ .

To evaluate this integral introduce an integration variable v (unrelated to the variable V for
option price) such that

v =
− log(S ′/S) + (r −D − 1

2
σ2)(T − t)

σ
√
T − t

and

dv =
dv

dS ′dS
′ = − 1

σ
√
T − t

dS ′

S ′ .
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With this our logarithmic differential becomes dS′

S′ = −σ
√
T − t dv and our integral above

transforms to

V (S, t) = −e
−r(T−t)
√
2π

∫ −∞

d2

e−v
2/2dv = e−r(T−t)N(d2) . (46)

when we recall the definition of d2. This is the formula for the value of a Binary call
option.

If our payoff Payoff(S) is instead a step function that turns off at the strike E i.e. Payoff(S) =
H(E − S), where H is the Heaviside function, then from the general expression for the
evaluation of the option price above in Equation 35 we see that

V (S, t) =
e−r(T−t)

σ
√

2π(T − t)

∫ ∞

0

H(E − S ′)e−[log(S′/S)−(r−D− 1
2
σ2)(T−t)]2/2σ2(T−t) dS

′

S ′

=
e−r(T−t)

σ
√

2π(T − t)

∫ E

0

e−[log(S′/S)−(r−D− 1
2
σ2)(T−t)]2/2σ2(T−t) dS

′

S ′ .

To evaluate this integral we again introduce the integration variable v such that

v =
− log(S ′/S) + (r −D − 1

2
σ2)(T − t)

σ
√
T − t

and

dv =
dv

dS ′dS
′ = − 1

σ
√
T − t

dS ′

S ′ .

With this our logarithmic differential becomes dS′

S′ = −σ
√
T − t dv and our integral above

transforms to

V (S, t) = −e
−r(T−t)
√
2π

∫ d2

∞
e−v

2/2dv = e−r(T−t)
[

1√
2π

∫ ∞

d2

e−v
2/2dv

]

= e−r(T−t)
[

1− 1√
2π

∫ d2

−∞
e−v

2/2dv

]

= e−r(T−t)(1−N(d2)) . (47)

again using the definition of d2. This is the formula for the value of a Binary put option.

Notes on the derivation of Delta for some common contracts

This section of the book introduces the notation of an options delta which is denoted as the
symbol ∆. In this section of these notes we will derive all of the given delta expressions
presented in the book. To do this it will be helpful to have the S derivative of d1 and d2.
Using Equations 37 and 38 we see that these are equal and given by

∂d1
∂S

=
∂d2
∂S

=
1

σS
√
T − t

. (48)
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• The expression for the delta of a European calls given by Equation 36 becomes

∆ = e−D(T−t)N(d1) + Se−D(T−t)N ′(d1)
∂d1
∂S

− Ee−r(T−t)N ′(d2)
∂d2
∂S

= e−D(T−t)N(d1) +
e−D(T−t)N ′(d1)

σ
√
T − t

− Ee−r(T−t)N ′(d2)

Sσ
√
T − t

= e−D(T−t)N(d1) +
1

σ
√

2π(T − t)

[

e−D(T−t)e−
1
2
d21 − E

S
e−r(T−t)e−

1
2
d22

]

.

when we use the expression for N ′(·) given by Equation 41. Lets consider the two
terms in brackets above. From the definition of d1 and d2 we can replace d2 with
d1 − σ

√
T − t and then expand the square in the second exponent to get

∆ = e−D(T−t)N(d1) +
e−

1
2
d21

σ
√

2π(T − t)

[

e−D(T−t) − E

S
e−r(T−t)e−

1
2
(−2σd1

√
T−t+σ2(T−t))

]

.

We now consider the exponent of the third term. Since the product d1σ
√
T − t equals

log(S/E) + (r +
1

2
σ2)(T − t) ,

we get a third term with an exponent of

− r(T − t) + d1σ
√
T − t +−1

2
σ2(T − t)

= −r(T − t) + log(S/E) + (r +
1

2
σ2)(T − t)− 1

2
σ2(T − t)

= log(S/E) .

With this the expression the two terms in brackets become

e−D(T−t) − E

S
e−D(T−t)elog(S/E) = 0 .

Thus we get for the delta of a European call

∆ = e−D(T−t)N(d1) , (49)

the expression claimed in the book.

• The expression for the delta of a European put can be given by taking the S derivative
of Equation 44 or by taking the derivative of the put-call parity relationship

C − P = Se−D(T−t) − Ee−r(T−t) ,

and using the known delta for a European call. Taking the S derivative of this expres-
sion we see that

∂C

∂S
− ∂P

∂S
= e−D(T−t) ,

or

∆ =
∂P

∂S
=
∂C

∂S
− e−D(T−t) = e−D(T−t)(N(d1)− 1) , (50)

the expression claimed in the book.
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• The delta for a binary call is given by taking the S derivative of Equation 46, where
we find

∆ =
∂

∂S
e−r(T−t)N(d2) = e−r(T−t)N ′(d2)

∂d2
∂S

=
e−r(T−t)N ′(d2)

σS
√
T − t

. (51)

• The delta for a binary put is given by taking the S derivative of Equation 47, where
we find

∆ =
∂

∂S
(e−r(T−t)(1−N(d2))) = −e

−r(T−t)N ′(d2)

σS
√
T − t

, (52)

the negative of the binary call delta.

Notes on the derivation of Gamma for some common contracts

Here the book introduces the notation of an options gamma which is denoted as the symbol
Γ. In this section of these notes we will derive the given gamma expressions presented in the
book.

• To derive Γ for a European call we take the S derivative of Equation 49. We find

Γ =
∂2C

∂S2
=

∂

∂S
e−D(T−t)N(d1) = e−D(T−t)N ′(d1)

∂d1
∂S

=
e−D(T−t)N ′(d1)

σS
√
T − t

. (53)

• To derive Γ for a European put we take the S derivative of Equation 50. We find

Γ =
∂2P

∂S2
=

∂

∂S
(e−D(T−t)(N(d1)− 1)) =

∂2C

∂S2

=
e−D(T−t)N ′(d1)

σS
√
T − t

, (54)

the same as the Γ for a European call.

• To derive Γ for a binary call using Equation 51 we have

Γ =
∂

∂S

(

e−r(T−t)N ′(d2)

Sσ
√
T − t

)

=
e−r(T−t)N ′′(d2)

Sσ
√
T − t

(

1

σS
√
T − t

)

− e−r(T−t)N ′(d2)

S2σ
√
T − t

=
e−r(T−t)

σS2
√
T − t

[

N ′′(d2)

σ
√
T − t

−N ′(d2)

]

.

But we can evaluate N ′′(d2) in terms of N ′(d2) using Equation 41 and we get

Γ =
e−r(T−t)

σS2
√
T − t

[

− d2

σ
√
T − t

− 1

]

N ′(d2) = − e−r(T−t)

σ2S2(T − t)

[

d2 + σ
√
T − t

]

N ′(d2)

= −e
−r(T−t)d1N

′(d2)

σ2S2(T − t)
. (55)
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• To derive Γ for a binary put recall that since the delta’s for a binary put and a binary
call are the negatives of each other, the gamma for a binary put must be the negative
of the gamma of a binary call and we have

Γ =
e−r(T−t)d1N

′(d2)

σ2S2(T − t)
. (56)

Notes on the derivation of Theta for some common contracts

Here the book introduces the notation of an options theta which is denoted as the symbol θ
and defined as ∂V

∂t
. In this section of these notes we will derive the given theta expressions

presented in the book. To derive these we will need the Black-Scholes equation with a
continuous dividend yield D which is given by

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r −D)S

∂V

∂S
− rV = 0 . (57)

Thus an options theta can be obtained in terms of its value (V ), its delta (∂V
∂S

), and its

gamma (∂
2V
∂S2 ) by solving for ∂V

∂t
or

θ ≡ ∂V

∂t
= −1

2
σ2S2∂

2V

∂S2
− (r −D)S

∂V

∂S
+ rV

= −1

2
σ2S2Γ− (r −D)S∆+ rV . (58)

We now have everything we need to calculate θ for some options.

• For a European call we have

V = Se−D(T−t)N(d1)− Ee−r(T−t)N(d2)

∆ = e−D(T−t)N(d1)

Γ =
e−D(T−t)N ′(d1)

σS
√
T − t

,

so Equation 58 above becomes

θ = −1

2
σ2S2

(

e−D(T−t)N ′(d1)

σS
√
T − t

)

− (r −D)Se−D(T−t)N(d1)

+ r(Se−D(T−t)N(d1)− Ee−r(T−t)N(d2))

= −σSe
−D(T−t)N ′(d1)

2
√
T − t

+DSe−D(T−t)N(d1)− rEe−r(T−t)N(d2) . (59)

• For a European put we have

V = −Se−D(T−t)N(−d1) + Ee−r(T−t)N(−d2)
∆ = e−D(T−t)(N(d1)− 1) = −e−D(T−t)N(−d1)

Γ =
e−D(T−t)N ′(d1)

σS
√
T − t

,
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so Equation 58 above becomes

θ = −1

2
σ2S2

(

e−D(T−t)N ′(d1)

σS
√
T − t

)

+ (r −D)Se−D(T−t)N(−d1)

+ r(−Se−D(T−t)N(−d1) + Ee−r(T−t)N(−d2))

= −σSN
′(d1)

2
√
T − t

−DSe−D(T−t)N(−d1) + rEe−r(T−t)N(−d2) . (60)

Since N ′(x) is an even function of x we could write the N ′(d1) factor in the first term
as N ′(−d1) if desired. This last equation could also be obtained from put-call parity
by taking the time derivative of the put-call parity expression 43 and using the theta
for a European call.

• For a binary call using what we have derived before we have

θ = −1

2
σ2S2

(

−e
−r(T−t)d1N

′(d2)

σ2S2(T − t)

)

− (r −D)S
e−r(T−t)N ′(d2)

σS
√
T − t

+ re−r(T−t)N(d2)

= re−r(T−t)N(d2) + e−r(T−t)N ′(d2)

[

d1
2(T − t)

− r −D

σ
√
T − t

]

. (61)

• For a binary put using what we have derived before we have

θ = −1

2
σ2S2

(

e−r(T−t)d1N
′(d2)

σ2S2(T − t)

)

+ (r −D)S
e−r(T−t)N ′(d2)

σS
√
T − t

+ re−r(T−t)(1−N(d2))

= re−r(T−t)(1−N(d2))− e−r(T−t)N ′(d2)

[

d1
2(T − t)

− r −D

σ
√
T − t

]

. (62)

Notes on the derivation of Speed for some common contracts

Here the book introduces the notation of an options speed which is defined as ∂3V
∂S3 . In this

section of these notes we will derive the given theta expressions presented in the book.

• For a European call taking the S derivative of Equation 53 and using Equation 48 we
get

∂3V

∂S3
=
e−D(T−t)N ′′(d1)

σ2S2(T − t)
− e−D(T−t)N ′(d1)

σS2
√
T − t

.

Using Equation 41 we can write this as

∂3V

∂S3
= −e

−D(T−t)N ′(d1)

σ2S2(T − t)

[

d1 + σ
√
T − t

]

. (63)

• Since the gamma for a European put and a European call are the same, the speed of
a European put must equal the speed of a European call or Equation 63.
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• For a binary call, using Equation 56 we see that we will need to evaluate

∂N ′(d2)

∂S
= N ′′(d2)

∂d2
∂S

= − N ′(d2)d2

σS
√
T − t

, (64)

the same equation hold when d2 is replaced by d1. Using this we find

∂3V

∂S3
= −e

−D(T−t)N ′(d2)

σ3S3(T − t)3/2
+
e−D(T−t)d1d2N

′(d2)

σ3S3(T − t)3/2
+ 2

e−D(T−t)d1N
′(d2)

σ2S3(T − t)

= −e
−D(T−t)N ′(d2)

σ2S3(T − t)

[

1− d1d2

σ
√
T − t

− 2d1

]

. (65)

• Since the gamma for a binary put is the negative of the gamma of a binary call the
speed of a binary put is the negative of a binary call or the negative of Equation 65.

Notes on the derivation of Vega for some common contracts

Here the book introduces the notation of an options vega which is defined as ∂V
∂σ

. In this
section of these notes we will derive the given vega expressions presented in the book.

• For a European call taking the σ derivative of Equation 53 we have

∂V

∂σ
= Se−D(T−t)N ′(d1)

∂d1
∂σ

−Ee−r(T−t)N ′(d2)
∂d2
∂σ

.

From Equation 42 we change the factor N ′(d2) into a factor in terms of N ′(d1) to get

∂V

∂σ
= Se−D(T−t)N ′(d1)

∂d1
∂σ

− Ee−r(T−t)
[

S

E
e(r−D)(T−t)N ′(d1)

]

∂d2
∂σ

= Se−D(T−t)N ′(d1)

[

∂d1
∂σ

− ∂d2
∂σ

]

.

From the definition of d1 and d2 given by Equation 37 and 38 above we find that

∂d1
∂σ

= −d1
σ

+
√
T − t and

∂d2
∂σ

= −d2
σ

−
√
T − t ,

so their difference is given by

∂d1
∂σ

− ∂d2
∂σ

=
d2 − d1
σ

+ 2
√
T − t = −

√
T − t+ 2

√
T − t =

√
T − t ,

when we recall that d2 = d1 − σ
√
T − t. Thus we have

∂V

∂σ
= Se−D(T−t)N ′(d1)

√
T − t , (66)

as the expression for the vega of a European call.
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• For a European put taking the σ derivative of the put-call parody Equation 43 gives

∂P

∂σ
=
∂C

∂σ
,

showing that the two contracts have the same value for vega.

• For a binary call we have

∂

∂σ

(

e−r(T−t)N(d2)
)

= e−r(T−t)N ′(d2)

[

−
√
T − t− d2

σ

]

= −e−r(T−t)N ′(d2)

[√
T − t+

d2
σ

]

. (67)

• For a binary put we have

∂

∂σ

(

e−r(T−t)(1−N(d2))
)

= e−r(T−t)N ′(d2)

[√
T − t +

d2
σ

]

, (68)

the negative of the vega for a binary call.

Notes on the derivation of Rho for some common contracts

Here the book introduces the notation of an options rho which is defined as ρ = ∂V
∂r
. In this

section of these notes we will derive the given rho expressions presented in the book.

• For a European call taking the r derivative of V is given by

∂V

∂r
= Se−D(T−t)N ′(d1)

∂d1
∂r

+ E(T − t)e−r(T−t)N(d2)−Ee−r(T−t)N ′(d2)
∂d2
∂r

.

Since ∂d1
∂r

=
√
T−t
σ

= ∂d2
∂r

so that the above simplifies to

∂V

∂r
= (Se−D(T−t)N ′(d1)− Ee−r(T−t)N ′(d2))

∂d1
∂r

+ E(T − t)e−r(T−t)N(d2)

= E(T − t)e−r(T−t)N(d2) . (69)

Where we have used Equation 42 to eliminate the first term.

• To compute the rho for a European put we can take the r derivative of the put-call
parody relationship Equation 43 to get the rho for a European put is given by

∂P

∂r
=

∂C

∂r
−E(T − t)e−r(T−t) = E(T − t)e−r(T−t)(N(d2)− 1)

= −E(T − t)e−r(T−t)N(−d2) . (70)

• For a binary call we have

∂

∂r

(

e−r(T−t)N(d2)
)

= −(T − t)e−r(T−t)N(d2) + e−r(T−t)N ′(d2)
∂d2
∂r

= −(T − t)e−r(T−t)N(d2) +

√
T − t

σ
e−r(T−t)N ′(d2) . (71)
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• For a binary put we have

∂

∂r

(

e−r(T−t)(1−N(d2))
)

= −(T−t)e−r(T−t)(1−N(d2))−
√
T − t

σ
e−r(T−t)N ′(d2) . (72)

Notes on the sensitivity of D for some common contracts

In this section of these notes we derive the given expressions for ∂V
∂D

presented in the book.

• For a European call taking the D derivative of V is given by

∂V

∂D
= −S(T − t)e−D(T−t)N(d1) + Se−D(T−t)N ′(d1)

∂d1
∂D

− Ee−r(T−t)N ′(d2)
∂d2
∂D

.

Use Equation 42 to convert N ′(d2) into a term with N ′(d1) as

∂V

∂D
= −S(T − t)e−D(T−t)N(d1) + Se−D(T−t)N ′(d1)

∂d1
∂D

− Ee−r(T−t)
[

S

E
N ′(d1)e

(r−D)(T−t)
]

∂d2
∂D

= −S(T − t)e−D(T−t)N(d1) + Se−D(T−t)N ′(d1)

[

∂d1
∂D

− ∂d1
∂D

]

.

Now
∂d1
∂D

= −
√
T − t

σ
and

∂d2
∂D

=
∂d1
∂D

= −
√
T − t

σ
,

so ∂d2
∂D

− ∂d1
∂D

= 0 and we get

∂V

∂D
= −(T − t)Se−D(T−t)N(d1) . (73)

• To compute the derivative of a European put with respect to D we can take the D
derivative of the put-call parody relationship Equation 43 to get that

∂P

∂D
=

∂C

∂D
+ (T − t)Se−D(T−t) = −(T − t)Se−D(T−t)N(d1) + (T − t)Se−D(T−t)

= (T − t)Se−D(T−t)N(−d1) . (74)

• For a binary call we have

∂

∂D

(

e−r(T−t)N(d2)
)

= e−r(T−t)N ′(d2)
∂d2
∂D

= −
√

(T − t)

σ
e−r(T−t)N ′(d2) . (75)

• For a binary put we have

∂

∂D

(

e−r(T−t)(1−N(d2))
)

=

√
T − t

σ
e−r(T−t)N ′(d2) . (76)
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Simple generalizations of the Black-Scholes world

Notes on commodities: incorporating the cost of carry

Given the Black-Scholes equation used for commodities

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r + u)S

∂V

∂S
− rV = 0 , (77)

here u represents the storage costs assumed proportional to the commodities price. If we
introduce the variable F defined by F = Se(r+u−y)(T−t), where y is the convenience yield,
then we can simplify Equation 77 by performing the change of variables from (S, t) to (F, t̄)
defined as

S = Fe−(r+u−y)(T−t̄) and t = t̄ ,

which has an inverse transformation is given by

F = Se(r+u−y)(T−t) and t̄ = t .

Using these we find the derivatives of S, and t transform as

∂

∂t
=
∂t̄

∂t

∂

∂t̄
+
∂F

∂t

∂

∂F
=

∂

∂t̄
− (r + u− y)F

∂

∂F
∂

∂S
=

∂t̄

∂S

∂

∂t̄
+
∂F

∂S

∂

∂F
= e(r+u−y)(T−t̄)

∂

∂F
so

∂2

∂S2
= e2(r+u−y)(T−t̄)

∂2

∂F 2
.

When we put these into Equation 77 and let V = H(F, t) we get

∂H

∂t̄
− (r + u− y)F

∂H

∂F
+

1

2
σ2S2e2(r+u−y)(T−t̄)

∂2H

∂F 2
+ (r + u)Se(r+u−y)(T−t̄)

∂H

∂F
− rH = 0 ,

or simplifying and writing everything in terms of (F, t̄) we get

∂H

∂t̄
+

1

2
σ2F 2∂

2H

∂F 2
+ yF

∂H

∂F
− rH = 0 ,

which is the equation quoted in the book.

Notes on the time dependent Black-Scholes equation

Consider the Black-Scholes equation where the “parameters” are now time-dependent

∂V

∂t
+

1

2
σ(t)2S2∂

2V

∂S2
+ (r(t)−D(t))S

∂V

∂S
− r(t)V = 0 , (78)

to simplify this equation we first transform the dependent variable V as V = e−β(t)V to get

−β̇(t)e−β(t)V + e−β(t)
∂V

∂t
+

1

2
σ(t)2S2e−β(t)

∂2V

∂S2
+ (r(t)−D(t))Se−β(t)

∂V

∂S
− r(t)e−β(t)V = 0 .
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Multiply this equation by eβ(t) and rearrange terms to get

∂V

∂t
+

1

2
σ(t)2S2∂

2V

∂S2
+ (r(t)−D(t))S

∂V

∂S
− (r(t) + β̇(t))V = 0 . (79)

We can further simplify this by transforming the independent variables S and t as

S = Seα(t) and t = γ(t) ,

under which we see that the derivative of S and t transform as

∂

∂t
=
∂t

∂t

∂

∂t
+
∂S

∂t

∂

∂S
= γ̇(t)

∂

∂t
+ α̇(t)Seα(t)

∂

∂S
= γ̇(t)

∂

∂t
+ α̇(t)S

∂

∂S
∂

∂S
=

∂t

∂S

∂

∂t
+
∂S

∂S

∂

∂S
= eα(t)

∂

∂S
so

∂2

∂S2
= e2α(t)

∂2

∂S
2 .

When we put these expressions into Equation 79 we get

γ̇(t)
∂V

∂t
+ α̇(t)S

∂V

∂S
+

1

2
σ(t)2S

2∂2V

∂S
2 + (r(t)−D(t))S

∂V

∂S
− (r(t) + β̇(t))V = 0 ,

or when we group terms some

γ̇(t)
∂V

∂t
+

1

2
σ(t)2S

2∂2V

∂S
2 + (r(t)−D(t) + α̇(t))S

∂V

∂S
− (r(t) + β̇(t))V = 0 . (80)

As we have not specified the functions α, β, or γ we will do so now to make the above
equation as simple as possible. To make the coefficient of V vanish in Equation 80 we take
β(t) so that it satisfies β̇(t) = −r(t) which holds if we take

β(t) ≡
∫ T

t

r(τ)dτ .

To make the coefficient of ∂V
∂S

vanish in Equation 80 lets pick α(t) in the same way. That is
we will define α(t) as

α(t) ≡
∫ T

t

(r(τ)−D(τ))dτ .

When we use these two definitions for α(t) and β(t) Equation 80 then becomes

γ̇(t)
∂V

∂t
+

1

2
σ(t)2S

2∂2V

∂S
2 = 0 .

Finally we take γ̇(t) = −σ(t)2 (note the negative sign) or

γ(t) ≡
∫ T

t

σ(τ)2dτ ,

we can make the time dependence of the coefficient σ(t)2 cancel. With this we then get

∂V

∂t
=

1

2
S
2∂2V

∂S
2 . (81)

Then if we solve this equation for V (S, t) the solution to the original time-dependent Equa-
tion 78 is given by reversing the transformations made above. That is given a functional
form or a numerical procedure for calculating V (S, t) the solution to the original problem is
given by

V = e−β(t)V (Seα(t), γ(t)) .
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Notes on pricing formula for power options

Assume we know how to value an option with a payoff given by the function Payoff(S).
Then by a simple transformation we can easily value an option that has a payoff given by
Payoff(Sα). Since we have S to the power of α this type of option is known as a power
option. To show how this is done we perform the transformation of the independent variable
given by

L = Sα .

Then the chain rule gives that S derivative in terms of L derivatives transform like

∂

∂S
=
∂L
∂S

∂

∂L = αSα−1 ∂

∂L
∂2

∂S2
= α(α− 1)Sα−2 ∂

∂L + αSα−1 ∂

∂S

(

∂

∂L

)

= α(α− 1)Sα−2 ∂

∂L + αSα−1

(

αSα−1 ∂

∂L

)(

∂

∂L

)

= α(α− 1)Sα−2 ∂

∂L + α2S2(α−1) ∂
2

∂L2
.

Using the fact that S = L1/α we get

∂

∂S
= αLα−1

α
∂

∂L and
∂2

∂S2
= α(α− 1)Lα−2

α
∂

∂L + α2L 2(α−1)
α

∂2

∂L2
.

Then the Black-Scholes Equation 57 in terms of L becomes

∂V

∂t
+

1

2
σ2L 2

α

[

α(α− 1)Lα−2
α
∂V

∂L + α2L 2(α−1)
α

∂2V

∂L2

]

+ (r −D)L 1
α

[

αLα−1
α
∂V

∂L

]

− rV = 0 .

When we simplify this some we get

∂V

∂t
+

1

2
α2σ2L2∂

2V

∂L2
+ α

[

(r −D) +
1

2
σ2(α− 1)

]

L∂V
∂L − rV = 0 . (82)

Now since we can solve the original problem with a payoff of Payoff(S) with parameter inputs
σ, r,D, the solution used to value the power option, is given by simply taking S → Sα and
changing the definitions of the (σ, r,D) parameters. For example, solving Equation 57 with

σ → ασ , and D → −(α− 1)

(

r − α

α− 1
D +

α

2
σ2

)

,

is equivalent to solving Equation 82.

Notes on pricing the log contract

The log-contract has a payoff given by V (S, T ) = log
(

S
E

)

. If we take V (S, t) of the form

V (S, t) = a(t) + b(t) log

(

S

E

)

. (83)

31



Then the final condition of V (S, t) when t = T with the above expression for V (S, t) implies
final conditions on a(t) and b(t) of a(T ) = 0 and b(T ) = 1. From the above expression for
V (S, t) we find derivatives given by

∂V

∂t
= ȧ(t) + ḃ(t) log

(

S

E

)

∂V

∂S
=
b(t)

S
and

∂2V

∂S2
= −b(t)

S2
.

When we put these expressions into the Black-Scholes Equation 57 we get

ȧ+ ḃ log

(

S

E

)

+
1

2
σ2S2

(

− b

S2

)

+ (r −D)S

(

b

S

)

− r

(

a + b log

(

S

E

))

= 0 ,

or when we simplify some

ȧ−
(

1

2
σ2 − (r −D)

)

b− ra+
(

ḃ− rb
)

log

(

S

E

)

= 0 .

Equating to zero the coefficient of log
(

S
E

)

, solving with the final condition b(T ) = 1 gives

b(t) = e−r(T−t) .

We then find that a(t) satisfies

ȧ− ra =

(

1

2
σ2 − r +D

)

b =

(

1

2
σ2 − r +D

)

e−r(T−t) .

Which is an ordinary differential equation like 311. Then in this case here we have that the
integrating factor µ(t) is given by µ(t) = e−rt and a(t) is

a(t) = Cert + ert
∫

e−rt
′

(

1

2
σ2 − r +D

)

e−r(T−t
′)dt′

= Cert + er(t−T )
(

1

2
σ2 − r +D

)

t .

Then we must pick the constant C such that a(T ) = 0 or

CerT +

(

1

2
σ2 − r +D

)

T = 0 so C = −
(

1

2
σ2 − r +D

)

Te−rT .

With this a(t) is given by

a(t) = −
(

1

2
σ2 − r +D

)

Te−r(T−t) +

(

1

2
σ2 − r +D

)

te−r(T−t)

=

(

r −D − 1

2
σ2

)

(T − t)e−r(T−t) ,

which is the solution given in the book.
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We can explicitly evaluate the option value when the payoff is of a log contract type. Using
the general option integration evaluation framework expressed by Equation 35 when we
consider a payoff function given by

Payoff(S) = max

(

log

(

S

E

)

, 0

)

,

the integrand vanishes unless S
E
> 1 or S > E. This means that we need to evaluate

V =
e−r(T−t)

σ
√

2π(T − t)

∫ +∞

E

e−[log(S
′/S)+(r− 1

2
σ2)(T−t)]

2
/2σ2(T−t) log

(

S ′

E

)

dS ′

S ′

=
e−r(T−t)

σ
√

2π(T − t)

∫ +∞

E

e−[log(S
′/S)+(r− 1

2
σ2)(T−t)]

2
/2σ2(T−t) log(S ′)

dS ′

S ′

− log(E)
e−r(T−t)

σ
√

2π(T − t)

∫ +∞

E

e−[log(S
′/S)+(r− 1

2
σ2)(T−t)]

2
/2σ2(T−t)dS

′

S ′ .

When we split the original integrand into two parts using log
(

S′

E

)

= log(S ′)− log(E). This
second integral is the value of a binary call option, see the discussion on Page 20, and is
given by Equation 46 multiplied by − log(E) or

− log(E)e−r(T−t)N(d2) . (84)

To evaluate the first integral we let

v =
− log(S ′/S) + (r −D − 1

2
σ2)(T − t)

σ
√
T − t

so

log(S ′) = log(S) + (r −D − 1

2
σ2)(T − t)− σ

√
T − t v and

dv = − 1

σ
√
T − t

dS ′

S ′ .

Now the end points of the integral transform to v(E) = d2 and v(+∞) = −∞, so when we
change the order the the integration and negate the integrand this first integral becomes

e−r(T−t)

σ
√

2π(T − t)

[

σ
√
T − t

∫ d2

−∞
e−

v2

2

(

log(S) + (r −D − 1

2
σ2)(T − t)− σ

√
T − tv

)

dv

]

=
e−r(T−t)√

2π

[(

log(S) + (r −D − 1

2
σ2)(T − t)

)√
2πN(d2)− σ

√
T − t

∫ d2

−∞
ve−

v2

2 dv

]

.

The first term above is given by
(

log(S) + (r −D − 1

2
σ2)(T − t)

)

N(d2)e
−r(T−t) , (85)

while the second term above is given by

−σ
√
T − te−r(T−t)√

2π

[

−e− v2

2

∣

∣

∣

d2

−∞
= −σ

√
T − te−r(T−t)√

2π

(

−e− d2
2

2

)

= σ
√
T − tN ′(d2)e

−r(T−t) . (86)
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Then combining the two parts given by Equations 85, and 84 into one expression and then
adding the part given by Equation 84 we get that the value of our log contract, V , is given
by

V =

(

log

(

S

E

)

+ (r −D − 1

2
σ2)(T − t)

)

N(d2)e
−r(T−t) + σ

√
T − tN ′(d2)e

−r(T−t) . (87)

the same expression as in the book.
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Early exercise and American options

Notes on the perpetual American put

In this section we perform the derivation of the value of a perpetual American put. The
Black-Scholes equation is given by

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 .

If our solution depends on S only i.e V = V (S) when we put this solution into the Black-
Scholes equation we find

1

2
σ2S2d

2V

dS2
+ rS

dV

dS
− rV = 0 .

This is a Euler differential equation and has solution given by V (S) = Sp for some p. Taking
the S derivative of this ansatz gives

dV

dS
= pSp−1

d2V

dS2
= p(p− 1)Sp−2 ,

which we can put into the equation above to obtain

1

2
σ2S2p(p− 1)Sp−2 + rSpSp−1 − rSp = 0 .

Factoring Sp from the above equation we see that p must satisfy

1

2
σ2p(p− 1) + rp− r = 0 , (88)

or grouping powers of p we find that p solves

σ2

2
p2 +

(

r − σ2

2

)

p− r = 0 .

Solving for p using the quadratic equation we find that two possible values for p are given
by

p =
−
(

r − σ2

2

)

±
√

(r − σ2

2
)2 + 4

(

σ2

2

)

r

2
(

σ2

2

) =

(

σ2

2
− r
)

±
(

r + σ2

2

)

σ2
.

Taking the plus sign in the above we find that one value for p is

p+ = 1 ,

while if we take the minus sign we find that another value for p is

p− = −2r

σ2
.
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Thus the complete solution in this case is given by

V (S) = AS +BS− 2r
σ2 ,

for two arbitrary constants A and B. If S → +∞ then our puts value must go to zero i.e.
V (S) → 0 so we must take A = 0. If we assume that there is a maximum stock price S∗ at
which we will exercise our option then at S∗ we must have our option value equal the payoff
at that price or V (S∗) = E − S∗. In terms of B this means that

BS∗−2r/σ2 = E − S∗ so B = (E − S∗)S∗2r/σ2 .

With this we have that V (S) for a perpetual American put is given by

V (S) = (E − S∗)

(

S

S∗

)2r/σ2

. (89)

As argued in the book we pick S∗ to make the expression for V (S) as large as possible. If we

write V (S) as V (S) = S2r/σ2 [(E−S∗)S∗2r/σ2 ] so that the leading expression is not a function
of S∗ by setting the first derivative of this expression with respect to S∗ equal to zero we get

∂V

∂S∗ = S2r/σ2
[

−S∗2r/σ2 +
2r

σ2
S∗2r/σ2−1(E − S∗)

]

= 0 .

When we solve for S∗ we get

S∗ =
E

1 + σ2/2r
. (90)

With this value of S∗ we have

E − S∗ =
σ2/2r

1 + σ2/2r
E , (91)

and B is then given by

B =

(

(σ2/2r)E

1 + σ2/2r

)

E2r/σ2

(1 + σ2/2r)2r/σ2
=
σ2

2r

(

E

1 + σ2

2r

) 2r
σ2+1

.

With this value of B we find that the value V (S) given by

V (S) =







σ2

2r

(

E

1+σ2

2r

)
2r
σ2+1

S− 2r
σ2 S > S∗

E − S S < S∗
, (92)

where S∗ is given by Equation 90. This function is plotted in Figure 1. The book then

argues that at the point S = S∗ the slope of the function (E−S∗)
(

S
S∗

)− 2r
σ2 is tangent to the

payoff function E − S. To show that we consider the difference of these two functions

D = (E − S∗)

(

S

S∗

)− 2r
σ2

− (E − S) ,
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Figure 1: A plot of V (S) given by Equation 92 for a perpetual American put for E = 1 and
σ2

2r
= 0.666.
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and take the S derivative of this expression evaluated at S = S∗. We find

∂D

∂S
=
E − S∗

S∗ (E − S∗)S∗ 2r
σ2

(

−2r

σ2
S− 2r

σ2−1

)

+ 1 .

If we let S = S∗ we get

(E − S∗)S∗ 2r
σ2

(

−2r

σ2
S∗− 2r

σ2−1

)

+ 1 ,

or

−2r

σ2
(E − S∗)S∗−1 + 1 .

Since E − S∗ is given by Equation 91 this becomes

− E

1 + σ2/2r
· 1 + σ2/2r

E
+ 1 = 0 ,

as claimed.

The book then argues that if we consider cases where the power function above meets the
payoff function E−S at a point where it is not tangent an arbitrage opportunity results. In
the book’s case (b), since V (S) < max(E − S, 0) we can create an arbitrage opportunity by
buying the option for −V (S) and immediately exercise the option to get a profit of E − S.
The total profit of this strategy would then be

−V (S) + E − S > 0 ,

and we have a guaranteed profit in this case.

The perpetual American put (with a continuous dividend yield)

The solution to the dividend modified Black-Scholes equation in this case is given by

V (S) = ASα
+

+BSα
−
, (93)

where α− < 0 < α+. Then since again as S → +∞ we expect that the put value V (S) → 0,
which means that A = 0 and we have V (S) = BSα

−
. To match the payoff at some value S∗

means that

BS∗α−
= E − S∗ or B =

E − S∗

S∗α− . (94)

With this expression we get that V (S) is given by

V (S) = (E − S∗)

(

S

S∗

)α−

.

As before we look for the value of S∗ that makes this expression a maximum. Writing V (S)

as V (S) = Sα
−
(E−S∗)S∗−α−

, to find the value of S∗ that makes this expression a maximum
we need solve

∂V

∂S∗ = Sα
−
[

−S∗−α− − α−(E − S∗)S∗−α−−1
]

= 0 .
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Multiply by S∗α−+1 and solve for S∗ to get

S∗ =
Eα−

−1 + α− =
E

1− 1/α− . (95)

With the above expression for S∗ we have that E − S∗ is given by

E − S∗ = −E
(

1/α−

1− 1/α−

)

.

Using this we can compute B as

B = − 1

α−

(

E

1− 1/α−

)1−α−

.

Thus we finally get that V (S) is given by

V (S) =







− 1
α−

(

E
1−1/α−

)1−α−

Sα
−

when S > E
1−1/α−

E − S when S < E
1−1/α−

,

for the valuation of a perpetual American put with dividends.

Notes on the perpetual American call

For a perpetual American call we must have V → 0 as S → 0 so the coefficient of B in
Equation 93 must be zero, to give V (S) = ASα

+
. Fitting our function V to the payoff at S∗

gives

AS∗α+

= S∗ − E ⇒ A =
S∗ −E

S∗α+ ,

and the functional form for V (S) then looks like

V (S) =

(

S∗ −E

S∗α+

)

Sα
+

= (S∗ −E)

(

S

S∗

)α+

.

To find the explicit value of S∗ we choose it to make V (S) as large as possible. We write V

as V (S) = Sα
+
(S∗ − E)S∗−α+

, then to maximize V we take the S∗ derivative of V , set the
result equal to zero, and solve for S∗. This equation is then

∂V

∂S∗ = Sα
+
[

S∗−α+ − α+(S∗ −E)S∗−α+−1
]

= 0 .

If we divide by S∗−α+−1 we get S∗ + α+(S∗ − E) = 0 or

S∗ =
−Eα+

1− α+
= E

1

1− 1
α+

and S∗ −E = E
1/α+

1− 1/α+
. (96)

Then we have for A

A = E
1/α+

1− 1/α+

(

(1− 1/α+)
α+

Eα+

)

=
1

α+

(

E

1− 1/α+

)1−α+

(97)
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Probability Density Functions and First Exit Times

We begin with the assumption that our random variable y evolves according to

dy = A(y, t)dt+B(y, t)dX . (98)

From which we can evaluate the expectation and the variance of this process over the time
interval dt. We have that E[dy] = A(y, t)dt and

E[dy2] = E[A2(y, t)dt2 + 2A(y, t)B(y, t)dtdX +B2(y, t)dX2] .

Then using the rule-of-thumb that E[dX ] ∼ dt1/2 in terms of dt the above becomes

E[dy2] = A2(y, t)dt2 + 2A(y, t)B(y, t)dt3/2 +B2(y, t)dt .

From this we can compute the variance of y as

Var[dy] = E[dy2]− E[dy]2

= 2A(y, t)B(y, t)dt3/2 +B2(y, t)dt ≈ B2(y, t)dt ,

to leading order.

Notes on the trinomial random walk

We now discuss how we can pick φ+(y, t) and φ−(y, t) such that we match the mean and
variance between the discrete model and the continuous processes over a small time step δt.
The mean change of δy

φ+δy + (1− φ+ − φ−)0 + φ−(−δy) = (φ+ − φ−)δy .

The mean change in δy2 is

φ+δy2 + (1− φ+ − φ−)02 + φ−δy2 = (φ+ − φ−)δy2

Since Var[δy] = E[δy2]−E[δy]2 we get

Var[δy] = (φ+ + φ−)δy2 − (φ+ − φ−)2δy2

= (φ+ + φ− − (φ+ − φ−))δy2 .

From the mean and variance of the process dy computed above, when we match the mean
and variance we get two conditions

(φ+ − φ−)δy = A(y, t)δt (99)

(φ+ + φ− − (φ+ − φ−)2)δy2 = B2(y, t)δt (100)

Putting Equation 99 into Equation 100 gives
(

φ+ + φ− − A2 δt
2

δy2

)

δy2 = B2δt ,
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or
(φ+ + φ−)δy2 = B2δt+ A2δt2 ≈ B2δt , (101)

when we drop the A2δt2 term. Adding Equations 99 to 101 we get

2φ+ = A
δt

δy
+B2 δt

δy2
or φ+ =

1

2

δt

δy2
(B2 + Aδy) . (102)

Next using Equation 99 to solve for φ− in terms of φ+ we have

φ− = φ+ − A
δt

δy
=

1

2

(

δt

δy2

)

(B2 + Aδy)− A
δt

δy

=
1

2

(

δt

δy2

)

(B2 − Aδy) . (103)

Notes on the forward equation

In this derivation, the point (y, t) is the starting location and (y′, t′) is the ending location.
We have the discrete density update equation

p(y, t; y′, t′) = φ−(y′ + δy, t′ − δt)p(y, t; y′ + δy, t′ − δt)

+ (1− φ−(y′, t′ − δt)− φ+(y′, t′ − δt))p(y, t; y′, t′ − δt)

+ φ+(y′ − δy, t′ − δt)p(y, t; y′ − δy, t′ − δt) . (104)

The Taylor series we need to expand this are

p(y, t; y′ + δy, t′ − δt) = p(y, t; y′, t′) +
∂p

∂y′
δy − ∂p

∂t′
δt+

1

2

∂2p

∂y′2
δy2 + · · ·

p(y, t; y′, t′ − δt) = p(y, t; y′, t′)− ∂p

∂t′
δt + · · ·

p(y, t; y′ − δy, t′ − δt) = p(y, t; y′, t′)− ∂p

∂y′
δy − ∂p

∂t′
δt +

1

2

∂2p

∂y′2
δy2 + · · ·

φ−(y′ + δy, t′ − δt) = φ−(y′, t′) +
∂φ−

∂y′
δy − ∂φ−

∂t′
δt +

1

2

∂2φ−

∂y′2
δy2 + · · ·

φ+(y′ − δy, t′ − δt) = φ+(y′, t′) +
∂φ+

∂y′
δy − ∂φ+

∂t′
δt +

1

2

∂2φ+

∂y′2
δy2 + · · ·

φ−(y′, t′ − δt) = φ−(y′, t′)− ∂φ−

∂t′
δt+ · · ·

φ+(y′, t′ − δt) = φ+(y′, t′)− ∂φ+

∂t′
δt+ · · · .

We put these expressions into the right-hand-side of Equation 104 in the MATHEMAT-
ICA file forward equation derivation.nb and use δy ∼ δt1/2 we get (using p to denote
p(y, t; y′, t′) we have

p = p+

[

∂φ−

∂y′
p− ∂φ+

∂y′
p+

∂p

∂y′
φ− − ∂p

∂y′
φ+

]

δt1/2

+

[

−∂p

∂t′
+
∂p

∂y′
∂φ−

∂y′
+
∂p

∂y′
∂φ+

∂y′
+

1

2

(

∂2φ−

∂y′2
p +

∂2φ+

∂y′2
p+ φ− ∂

2p

∂y′2
+ φ+ ∂

2p

∂y′2

)]

δt +O(δt3/2) ,
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or

0 =

[

∂(φ−p)

∂y′
− ∂(φ+p)

∂y′

]

δt1/2

+

[

−∂p

∂t′
+
∂p

∂y′
∂

∂y′
(φ− + φ+) +

1

2

(

p
∂2

∂y′2
(φ− + φ+) + (φ− + φ+)

∂2p

∂y′2

)]

δt+O(δt3/2)

=
∂

∂y′
[

p(φ− − φ+)
]

δt1/2

+

[

−∂p

∂t′
+

1

2

(

p
∂2

∂y′2
(φ− + φ+) + 2

∂p

∂y′
∂

∂y′
(φ− + φ+) +

∂2p

∂y′2
(φ− + φ+)

)]

δt+O(δt3/2) .

From Equations 102 and 103 evaluated at (y′, t′) we have that

φ− − φ+ = − δt

δy2
A(y′, t′)δy = − δt

δy
A(y′, t′) = −δt1/2A(y′, t′) ,

and

φ− + φ+ =
δt

δy2
B(y′, t′)2 = B(y′, t′)2 ,

so the above becomes

0 = − ∂

∂y′
(pA)δt+

[

−∂p

∂t′
+

1

2

(

p
∂2B2

∂y′2
+ 2

∂p

∂y′
∂B2

∂y′
+
∂2p

∂y′2
B2

)]

δt+O(δt3/2) .

Then to leading order for p we get

∂p

∂t′
= −∂pA(y

′, t′)

∂y′
+

1

2

∂2pB(y′, t′)2

∂y′2
, (105)

which is the forward Kolmogorov or Fokker-Planck equation.

Notes on expected first exit times

If the function u(y, t) is the expected first exit time then u must satisfy the differential
equation

∂u

∂t
+

1

2
B(y, t)2

∂2u

∂y2
+ A(y, t)

∂u

∂y
= −1 . (106)

For the logarithmic asset y = S and since dS = µSdt+σSdX we have A = µS and B = σS,
then Equation 107 we must solve is given by

1

2
σ2S2 d

2u

dS2
+ µS

du

dS
= −1 , (107)

with boundary conditions u(S0) = u(S1) = 0. Writing this as

d

dS

(

du

dS

)

+
2µ

σ2

1

S

du

dS
= − 2

σ2S2
,
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we can use the results from the appendix on Page 154, to solve for du
dS
. We first find an

integrating factor given by

exp

(
∫

2µ

σ2

dS ′

S ′

)

= exp
(

log
(

S
2µ

σ2

))

= S
2µ

σ2 = Sκ .

Where we have defined κ as κ ≡ 2µ
σ2
. With this we have that du

dS
given by

du

dS
=

1

Sκ

[
∫

S ′κ
(

− 2

σ2S ′2

)

dS ′ + C

]

= − 2

σ2(κ− 1)
S−1 + CS−κ .

Integrating this expression once more to get u(S) we find

u(S) =
2

σ2(1− κ)
log(S) +

S1−κ

1− κ
C +D . (108)

We now need to pick C and D to match the boundary conditions u(S0) = u(S1) = 0. This
means we need to solve

2

σ2(1− κ)
log(S0) +

S1−κ
0

1− κ
C +D = 0 (109)

2

σ2(1− κ)
log(S1) +

S1−κ
1

1− κ
C +D = 0 . (110)

If we take the negative of the first equation and add this to the second equation we find that
C is given by

C = − 2

σ2

log(S1/S0)

S1−κ
1 − S1−κ

0

.

When we put this into Equation 109 and then solve for D we get

D = − 2

σ2(1− κ)
log(S0) +

2

σ2(1− κ)

S1−κ
0

S1−κ
1 − S1−κ

0

log(S1/S0) .

Then with C and D specified we find u(S) given by

u(S) =
2

σ2(1− κ)

(

log(S/S0) +
−S1−κ + S1−κ

0

S1−κ
1 − S1−κ

0

log(S1/S0)

)

=
1

1
2
σ2 − µ

(

log(S/S0)−
1− (S/S0)

1−2µ/σ2

1− (S1/S0)1−2µ/σ2
log(S1/S0)

)

. (111)

Notes on expectations and Black-Scholes

Recall the backwards Kolmogorov equation for the random variable y that satisfies the
stochastic differential equation dy = A(y, t)dt+B(y, t)dX or

∂p

∂t
+

1

2
B2(y, t)

∂2p

∂y2
+ A(y, t)

∂p

∂y
= 0 . (112)
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When the variable y is the stock price S and satisfies geometric Brownian motion with
dS = µSdt + σSdX we have A = µS and B = σS so that the the backwards Kolmogorov
equation in this case becomes

∂p

∂t
+

1

2
σ2S2 ∂

2p

∂S2
+ µS

∂p

∂S
= 0 . (113)

If we have a payoff at t = T depending on the final value of S given by F (S), then we can
calculate the expected payoff by solving the backwards Kolmogorov equation with a final
condition given by this payoff. Call this function pF (S, t), so that pF (S, T ) = F (S). Consider
the discounted value of pF (S, t) or

e−r(T−t)pF (S, t) .

If we call this function V (S, t) then pF (S, t) = er(T−t)V (S, t) and derivative of pF in terms of
V become

∂pF
∂S

= er(T−t)
∂V

∂S
and

∂2pF
∂S2

= er(T−t)
∂2V

∂S2

∂pF
∂t

= −re−r(T−t)V + er(T−t)
∂V

∂t
.

When we put this into the backwards Kolmogorov equation we get

−re−r(T−t)V + er(T−t)
∂V

∂t
+

1

2
σ2S2er(T−t)

∂2V

∂S2
+ µS

∂V

∂S
= 0 ,

or
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ µS

∂V

∂S
− rV = 0 .

This is just like the Black-Scholes equation when the coefficient of ∂V
∂S

is rS rather than µS.

Notes on a common misconception of a call options delta

In this section we consider how to compute the probability that a stock will be above the
strike E at the time T given that at an earlier time t it has value S. To solve this problem
we will need to solve the forward Kolmogorov equation with initial conditions given by a
delta function. This solution to this differential equation is quoted in the book and is given
by

p(S, t;S ′, t′) =
1

σS ′
√

2π(t′ − t)
e
− (log(S/S′)+(µ− 1

2σ2)(t′−t))2

2σ2(t′−t) . (114)

To evaluate the total probability that the stock ends above E at the time t′ = T is given by
∫ ∞

S′=E

p(S, t;S ′, T )dS ′ =
1

σ
√

2π(T − t)

∫ ∞

S′=E

1

S ′ e
(log(S/S′)+(µ− 1

2σ2)(T−t))2

2σ2(T−t) dS ′ .

To integrate this let

v =
log(S/S ′) + (µ− 1

2
σ2)(T − t)

σ
√
T − t

so

dv = − 1

S ′
1

σ
√
T − t

dS ′ ,
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and we get

1√
2π

∫

log(S/E)+(µ−1
2σ2)(T−t)

σ
√
T−t

−∞
e−

1
2
v2dv = N

(

log(S/E) + (µ− 1
2
σ2)(T − t)

σ
√
T − t

)

.

The book defines the expression in the argument to N(·) as d′1. This differs from d1 given
by Equation 37 in two ways. One way is that the r in the coefficient of T − t in d1 is
replaced with a µ in the above expression. A second way is that the sign of 1

2
σ2 in the above

expression is negative where in the expression for d1 it is positive.
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Multi-asset options

Notes on exchange options

The payoff of the exchange option considered can be written

V (S1, S2, T ) = max(q1S1 − q2S2, 0) = max

(

q1S2

(

S1

S2
− q2
q1

)

, 0

)

= q1S2max

(

ξ − q2
q1
, 0

)

,

with ξ ≡ S1

S2
. Thus in terms of the function H defined with V (S1, S2, t) = q1S2H(ξ, t) we

have our final condition given by

H(ξ, T ) = max

(

ξ − q2
q1
, 0

)

.

If we now consider the derivatives of V with respect to S1 and S2 in terms of the new
variable ξ. Recalling that the definition of the partial derivative of a function with respect
to S1 means that we keep the other variables (like S2 and t) constant we find that

∂

∂S1
=

∂ξ

∂S1

∂

∂ξ
=

1

S2

∂

∂ξ
(115)

∂

∂S2
=

∂ξ

∂S2

∂

∂ξ
= −S1

S2
2

∂

∂ξ
= − ξ

S2

∂

∂ξ
(116)

∂2

∂S1
2 =

∂

∂S1

(

1

S2

∂

∂ξ

)

=
1

S2

∂

∂S1

(

∂

∂ξ

)

=
1

S2
1

∂

∂ξ

(

∂

∂ξ

)

=
1

S2
2

∂2

∂ξ2
(117)

∂2

∂S2
2 =

∂

∂S2

(

−S1

S2
2

∂

∂ξ

)

= −S1
∂

∂S2

(

1

S2
2

∂

∂ξ

)

= −S1

[

− 2

S3
2

∂

∂ξ
+

1

S2
2

∂

∂S2

(

∂

∂ξ

)]

= −S1

[

− 2

S3
2

∂

∂ξ
+

1

S2
2

(

− ξ

S2

∂2

∂ξ2

)]

=
2ξ

S2
2

∂

∂ξ
+
ξ2

S2
2

∂2

∂ξ2
(118)

∂2

∂S1∂S2
=

∂

∂S1

(

− ξ

S2

∂

∂ξ

)

= − 1

S2

∂

∂S1

(

ξ
∂

∂ξ

)

= − 1

S2
2

∂

∂ξ

(

ξ
∂

∂ξ

)

= − 1

S2
2

[

∂

∂ξ
+ ξ

∂2

∂ξ2

]

. (119)

These give the formulas for the transformation of the S1 and S2 derivatives into derivatives
with respect to ξ. In the Black-Scholes equation we have S1 and S2 derivatives of the function
V which we need to convert into derivatives of the function H . We find given how V and H
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are related and the above relationships that

∂V

∂S1
= q1S2

∂H

∂S1
= q1

S2

S2

∂H

∂ξ
= q1

∂H

∂ξ
(120)

∂2V

∂S1
2 =

∂

∂S1

(

q1
∂H

∂ξ

)

=
q1
S2

∂2H

∂ξ2
(121)

∂V

∂S2

= q1
∂

∂S2

(S2H) = q1

[

H + S2
∂H

∂S2

]

= q1

[

H − ξ
∂H

∂ξ

]

(122)

∂2V

∂S2
2 =

∂

∂S2

[

q1

(

H − ξ
∂H

∂ξ

)]

= −q1
ξ

S2

[

∂H

∂ξ
− ∂H

∂ξ
− ξ

∂2H

∂ξ2

]

=
q1ξ

2

S2

∂2H

∂ξ2
(123)

∂2V

∂S1∂S2

=
∂

∂S1

(

∂V

∂S2

)

= q1
∂

∂S1

(

H − ξ
∂H

∂ξ

)

(124)

=
q1
S2

(

∂H

∂ξ
− ∂H

∂ξ
− ξ

∂2H

∂ξ2

)

= −q1ξ
S2

∂2H

∂ξ2
. (125)

It is these derivatives we put into the two dimensional Black-Scholes equation

∂V

∂t
+

1

2

[

σ2
1S

2
1

∂2V

∂S1
2 + 2σ1σ2ρ12S1S2

∂2V

∂S1∂S2
+ σ2

2S
2
2

∂2V

∂S2
2

]

+ (r −D1)S1
∂V

∂S1
+ (r −D2)S2

∂V

∂S2
− rV = 0 ,

to get

q1S2
∂H

∂t
+

1

2
σ2
1S

2
1

q1
S2

∂2H

∂ξ2
− σ1σ2ρ12S1S2

q1ξ

S2

∂2H

∂ξ2
+

1

2
σ2
2S

2
2

q1ξ
2

S2

∂2H

∂ξ2

+ q1(r −D1)S1
∂H

∂ξ
+ q1(r −D2)S2

[

H − ξ
∂H

∂ξ

]

− rq1S2H = 0 .

If we divide by q1S2 and simplify some we get

∂H

∂t
+

1

2
(σ2

1 − 2σ1σ2ρ12 + σ2
2)ξ

2∂
2H

∂ξ2
+ (D2 −D1)ξ

∂H

∂ξ
−D2H = 0 .

If we define the coefficient in front of ξ2 ∂
2H
∂ξ2

as 1
2
σ′2 then the above equation is exactly the

Black-Scholes equation with simple a parameter change

r → D2 , D → D1 , σ → σ′ , and E → q2
q1
.

Then we know the solution for H(ξ, t) and it is given by Equation 36 or

H(ξ, t) = ξe−D1(T−t)N(d′1)−
q2
q1
e−D2(T−t)N(d′2) ,

with d′1 and d′2 given by

d′1 =
log
(

q1
q2

S1

S2

)

+ (D2 −D1 +
1
2
σ′2)(T − t)

σ′
√
T − t

d′2 = d′1 − σ′√T − t ,
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Then with this expression for H(ξ, t) we have that V is given by

V (S1, S2, t) = q1S2H(ξ, t)

= q1S1e
−D1(T−t)N(d′1)− q2S2e

−D2(T−t)N(d′2) ,

Now using Equation 120 and Equation 122 the hedged portfolio Π for this option is given by

Π = V −∆1S1 −∆2S2 = q1S2H − q1S
∂H

∂ξ
−
(

q1H − q1ξ
∂H

∂ξ

)

S2 = 0 .

Notes on quantos

We can consider the differential of the product SNS$ using the multidimensional version of
Ito’s lemma. We have d(SNS$) given by

(

∂

∂t
(SNS$) +

1

2

[

σ2
NS

2
N

∂2

∂SN
2 (SNS$) + 2σNσ$ ρSNS$

∂2

∂SN∂S$

(SNS$) + σ2
$S

2
$

∂2

∂S$
2 (SNS$)

])

dt

+
∂

∂SN
(SNS$)dSN +

∂

∂S$

(SNS$)dS$

= σNσ$ ρSNS$dt+ S$dSN + SNdS$ ,

which is the expression used in the book for the change in the value of the quanto’s portfolio.
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How to Delta Hedge

Warning: In this chapter I attempted to duplicate several of the results stated in the
chapter. In a couple of places I found results that differed from what the book presented. I
checked my algebra several times and couldn’t find any mistakes. These differences maybe
due to typos or errors in my algebra. If anyone gets a different results from the book or
these notes (or the same) please contact me.

Notes on what if actual and implied volatility are different

Consider an at the money (ATM) straddle or a portfolio that is long one call option and one
long one put option with the same strike and time till expiration so V = C + P . If we are
close to expiration then from the two expressions given in the book earlier

C ≈ 0.4Se−D(T−t)σ
√
T − t

P ≈ 0.4Se−D(T−t)σ
√
T − t .

So if we add these two contracts

V = C + P ≈ 0.8Se−D(T−t)σ
√
T − t .

Since
√

2
π
≈ 0.8 when D = 0 this is the result considered in the book. If the true volatility σ

is larger than the implied volatility σ̃ then the profit from this straddle will be proportional
to the difference between σ and σ̃ or

PnL ≈ 0.8S(σ − σ̃)
√
T − t ,

when D = 0.

Notes on hedging with actual volatility σ

In this section we further document and provide more extensive derivations of many of the
results in the book. We start with the portfolio before the time step dt which in net is given
by

V i −∆aS + (−V i +∆aS) = 0 . (126)

Then after a discrete amount of time, each “term” representing the option, the stock position,
and any left over cash, in the above expression changes according to

V i + dV i + (−∆a(S + dS)) +
[

(−V i +∆aS)(1 + rdt)−∆aDSdt
]

.

When we recall Equation 126 the above becomes

PnLt,t+dt ≡ dV i −∆adS + (−V i +∆aS)rdt−∆aDSdt , (127)
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which is the expression in the book. If the option had been priced with the actual volatility
σ then there must be no profit (or loss) from this transaction and the expression above will
be zero. This is expressed by replacing “i” with “a” in the above to get

dV a −∆adS − r(V a −∆aS)dt−∆aDSdt = 0 .

We can subtract this last expression (which has value zero) from the previous one to get

dV i − dV a + r(−V idt) + rV adt = dV i − dV a − r(V i − V a)dt = ertd(e−rt(V i − V a)) .

This is the profit we obtain over the time t to t + dt.

The total profit is the integral of the infinitesimal profit ert0d(e−rt(V i − V a)) or

ert0
∫ T

t0

d(e−rt(V i − V a)) = ert0
[

e−rt(V i − V a)
∣

∣

T

t0

= ert0
[

e−rT (V i(T )− V a(T ))− e−rt0(V i(t0)− V a(t0))
]

= −(V i(t0)− V a(t0)) = V a − V i ,

which shows that there is a guaranteed profit for this strategy. We can also consider the one
time step mark-to-market profit and loss in Equation 127 using Ito’s lemma. For the term
dV i we have

dV i = θidt+∆idS +
1

2
σ2S2Γidt ,

to get

PnLt,t+dt = θidt+∆idS +
1

2
σ2S2Γidt−∆adS − r(V i −∆aS)dt−∆aDSdt .

Since our stock price changes according to dS = µSdt+ σSdX the above becomes

θidt+ (∆i −∆a)µSdt+
1

2
σ2S2Γidt+ σSdX(∆i −∆a)− r(V i −∆aS)dt−∆aDSdt .

Recall the Black-Scholes equation

Vt +
1

2
σ2S2VSS + (r −D)SVS − rV = 0 ,

with σ → σ̃ and written in terms of “the greeks” of

θi = −1

2
σ̃2S2Γi − (r −D)S∆i + rV i . (128)

Using this we can replace θi in the expression for PnLt,t+dt above to get

PnLt,t+dt =
1

2
(σ2 − σ̃2)S2Γidt+ (∆i −∆a)µSdt+ (∆i −∆a)σSdX

+∆arSdt−∆aDSdt− rS∆idt+DS∆idt

=
1

2
(σ2 − σ̃2)S2Γidt+ (∆i −∆a)µSdt+ (∆i −∆a)σSdX

− (∆i −∆a)rSdt+ (∆i −∆a)SDdt

=
1

2
(σ2 − σ̃2)S2Γidt+ (∆i −∆a) [(µ− r +D)Sdt+ σSdX ] .

50



Notes on hedging with implied volatility σ̃

When we hedge with implied volatility σ̃ the total portfolio initially is the same as given by
Equation 127 but with ∆a → ∆i or

PnLt,t+dt = dV i −∆idS − r(V i −∆iS)dt−∆iDSdt .

We again use Ito’s lemma to replace dV i with an expression in terms of Θi, ∆i, Γi to get

PnLt,t+dt = θidt+
1

2
σ2S2Γidt+∆idS −∆idS − r(V i −∆iS)dt−∆iDSdt ,

or grouping terms

PnLt,t+dt = θidt+
1

2
σ2S2Γidt− r(V i −∆iS)dt−∆iDSdt .

Now use Black-Scholes with σ → σ̃ or Equation 128 we get

−1

2
σ̃2S2Γidt− (r −D)S∆i + rV i +

1

2
σ2S2Γidt− r(V i −∆iS)dt−∆iDSdt ,

which simplifies to

PnLt,t+dt =
1

2
(σ2 − σ̃2)S2Γidt . (129)

The present value of this profit is e−r(t−t0) multiplied by the above, so the total profit is

∫ T

t0

e−r(t−t0)
1

2
(σ2 − σ̃2)S2Γidt =

1

2
(σ2 − σ̃2)

∫ T

t0

e−r(t−t0)S2Γidt .

As explained in the book if you hedge with a volatility σh then it can be shown that the
principal value of the profit is given by

V (S, t; σh)− V (S, t; σ̃) +
1

2
(σ2 − σ2

h)

∫ T

t0

e−r(t−t0)S2Γhdt . (130)

It would seem to be a good idea to hedge with a volatility σh that maximized this expression.

The expected profit after hedging using implied volatility

For the differential equation

∂P

∂t
+

1

2
σ2S2∂

2P

∂S2
+ µS

∂P

∂S
+

1

2
(σ2 − σ̃2)e−r(t−t0)S2Γi

∂P

∂I
= 0 , (131)

with the final condition P (S, I, T ) = I when we consider a solution of the form

P (S, I, t) = I +H(S, t) ,
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we have derivatives of P in terms of H given by

∂P

∂t
=
∂H

∂t
,

∂P

∂S
=
∂H

∂S
,

∂2P

∂S2
=
∂2H

∂S2
,

∂P

∂I
= 1 .

So that the differential equation for H satisfies

∂H

∂t
+

1

2
σ2S2∂

2H

∂S2
+ µS

∂H

∂S
+

1

2
(σ2 − σ̃2)e−r(t−t0)S2Γi = 0 . (132)

First consider the source term 1
2
(σ2−σ̃2)e−r(t−t0)S2Γi recall that when we hedge with implied

volatility σ̃, the expression for Γi is given by Equation 53 (with D = 0) or

Γi =
∂2V

∂S2
=

N ′(d1)

σ̃S
√
T − t

,

and using the facts

N ′(d1) =
1√
2π
e−

1
2
d21

d2 =
log(S/E) + (r − 1

2
σ̃2)(T − t)

σ̃
√
T − t

d1 = d2 + σ̃
√
T − t ,

we first have that

N ′(d1) =
1√
2π
e−

1
2
(d2+σ̃

√
T−t)2 =

1√
2π
e−

1
2
(d22+2σ̃

√
T−td2+σ̃2(T−t)) =

1√
2π
e−σ̃

√
T−td2e−

1
2
σ̃2(T−t)e−

1
2
d22 .

Now from the definition of d2 we see that

−σ̃
√
T − t d2 = − log(S/E)− (r − 1

2
σ̃2)(T − t) ,

and thus

N ′(d1) =
1√
2π

exp

{

− log(S/E)− (r − 1

2
σ̃2)(T − t)− 1

2
σ̃2(T − t)

}

e−
1
2
d22

=
1√
2π

exp {− log(S/E)− r(T − t)} e− 1
2
d22 =

E

S
√
2π
e−r(T−t)e−

1
2
d22 .

With this the source term becomes

1

2
(σ2 − σ̃2)e−r(t−t0)S2Γi =

1
2
(σ2 − σ̃2)e−r(t−t0)S

σ̃
√
T − t

(

E

S
√
2π
e−r(T−t)e−

1
2
d22

)

=
E(σ2 − σ̃2)

2σ̃
√

2π(T − t)
e−r(T−t0)e−

1
2
d22 , (133)

the same expression quoted in the book. We now perform the change of variables from (S, t)
to (x, τ) where x and τ are defined by

x = ln

(

S

E

)

+
2

σ2
(µ− 1

2
σ2)τ = ln

(

S

E

)

+ (µ− 1

2
σ2)(T − t) (134)

τ =
σ2

2
(T − t) . (135)
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Note that this is different than what the text of the chapter says but matches what the
appendix to this chapter states. In this case we have that our t and S derivatives transform
as

∂

∂t
=
∂x

∂t

∂

∂x
+
∂τ

∂t

∂

∂τ
= −

(

µ− 1

2
σ2

)

∂

∂x
− σ2

2

∂

∂τ

∂

∂S
=
∂x

∂S

∂

∂x
+
∂τ

∂S

∂

∂τ
=

1

S

∂

∂x
∂2

∂S2
=

∂

∂S

(

1

S

∂

∂x

)

= − 1

S2

∂

∂x
+

∂

∂S

(

∂

∂x

)

= − 1

S2

∂

∂x
+

1

S2

∂2

∂x2
.

With this transformation of the independent variables we find that the operator given in
Equation 132 or

∂

∂t
+

1

2
σ2S2 ∂

2

∂S2
+ µS

∂

∂S
,

becomes

∂

∂t
+

1

2
σ2S2 ∂

2

∂S2
+ µS

∂

∂S
= −

(

µ− 1

2
σ2

)

∂

∂x
− σ2

2

∂

∂τ
− 1

2
σ2 ∂

∂x
+

1

2
σ2 ∂

2

∂x2
+ µ

∂

∂x

=
σ2

2

(

− ∂

∂τ
+

∂2

∂x2

)

, (136)

as claimed in the appendix. If we perform this change of variables in Equation 132, when
we define the change of coordinate function as h(x, τ) = H(S, t) we get

1

2
σ2

(

−∂h
∂τ

+
∂2h

∂x2

)

+
1

2
(σ2 − σ̃2)e−r(t−t0)S2Γi = 0 .

Solving for ∂h
∂τ

we get
∂h

∂τ
=
∂2h

∂x2
+

(

σ2 − σ̃2

σ2

)

e−r(t−t0)S2Γi . (137)

Note that the book calls the function H(S, t) above as the function F (S, t) and calls h(x, τ)
as the function w(x, τ) in the appendix. In this last expression we want to use Equation 133

with
√
T − t =

√
2τ
σ

we get

∂h

∂τ
=
∂2h

∂x2
+

(

E(σ2 − σ̃2)

2σ̃σ
√
πτ

)

e−r(T−t0)e−
1
2
d22 . (138)

Warning: I get a factor of 2 in the denominator of the forcing term in Equation 138 that
the book does not have. I have checked this algebra several times and can’t seem to find
any errors. If anyone sees anything wrong with my derivation please let me know (or if it is
correct). When we express d2 in terms of the variables x and τ we find

d2 =
log(S/E) + (r − 1

2
σ̃2)(T − t)

σ̃
√
T − t

=
σ

σ̃

(

x− 2
σ2
(µ− 1

2
σ2)τ + 2

σ2
(r − 1

2
σ̃2)τ√

2τ

)

= d2(x, τ) . (139)
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If we denote the forcing function in Equation 138 by f(x, τ) then recalling that the solution
h(x, τ) to ∂h

∂τ
= ∂2h

∂x2
+f(x, τ) that is initially zero when τ = 0 and has zero at plus and minus

infinity in x is given by

h(x, τ) =
1

2
√
π

∫ ∞

−∞

∫ τ

0

f(x′, τ ′)√
τ − τ ′

e
− (x−x′)2

4(τ−τ ′) dτ ′dx′ . (140)

Using this, when we put in what we know the expression for f(x, τ) is we get for the solution
to Equation 138 is

h(x, τ) =

(

1

2
√
π

)

E(σ2 − σ̃2)e−r(T−t0)

2σ̃σ
√
π

∫ ∞

−∞

∫ τ

0

1√
τ ′

1√
τ − τ ′

K(x, τ, x′, τ ′)dτ ′dx′ , (141)

where

K(x, τ, x′, τ ′) = exp

{

− (x− x′)2

4(τ − τ ′)
− σ2

4σ̃2τ ′

(

x′ − 2

σ2
(µ− 1

2
σ2)τ ′ +

2

σ2
(r − 1

2
σ̃2)τ ′

)2
}

.

To evaluate the integral in Equation 141 above needed to evaluate h(x, τ) we want to expand
the argument of the exponential in K(x, τ, x′, τ ′) to get a quadratic polynomial in x′. We
then take this polynomial and complete the square to write it in the form −a(x′ + b)2 + c,
where a, b, and c can possibly be functions of the variables t and τ ′. We do this algebra in
the Mathematica file expectation single stock.nb. In that script we find that the value
of a and c are given by

a(τ, τ ′) =
1

4(τ − τ ′)
+

σ2

4σ̃2τ ′
(142)

c(x, τ, τ ′) = − σ2(x−m(τ ′))2

4(σ2(τ − τ ′) + σ̃2τ ′)
with (143)

m(τ ′) =
2

σ2
(µ− 1

2
σ2)τ ′ − 2

σ2
(r − 1

2
σ̃2)τ ′ . (144)

The value of b is computed in the Mathematica workbook but is not needed since it plays
no roll in the final expression for h(x, τ). With some simplifications these expressions agree
with the ones in the book. When we put this factorization into Equation 141 and exchange
the order of the τ ′ and x′ integration we get

h(x, τ) =

(

1

2
√
π

)

E(σ2 − σ̃2)e−r(T−t0)

2σ̃σ
√
π

∫ τ

0

1√
τ ′

1√
τ − τ ′

∫ ∞

−∞
exp(−a(x′ + b)2 + c)dx′dτ ′

=

(

1

2
√
π

)

E(σ2 − σ̃2)e−r(T−t0)

2σ̃σ
√
π

∫ τ

0

1√
τ ′

1√
τ − τ ′

exp(c)

(
∫ ∞

−∞
e−ax

′2
dx′
)

dτ ′ .

Since
∫ ∞

−∞
e−ax

′2
dx′ =

√

π

a
, (145)

we have that the above is given by

h(x, τ) =
1

4
√
π

E(σ2 − σ̃2)e−r(T−t0)

σ̃σ

∫ τ

0

1√
τ ′

1√
τ − τ ′

exp(c)√
a

dτ ′ . (146)
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Note that both a and c are functions of τ ′ and cannot be taken out of the integral. We now
make the change of variable from τ ′ to s where s is defined in terms of τ ′ as

s = t +
2

σ2
τ ′ .

We also replace all τ ’s and x’s with their equivalent expressions in terms of t and S using
Equations 134 and 135. To do this we need to transform several pieces in the above integral
namely

τ ′ =
σ2

2
(s− t)

τ − τ ′ =
σ2

2
(T − s)

a =
1

2σ2σ̃2

(

σ̃2(s− t) + σ2(T − s)

(s− t)(T − s)

)

c = −
[

ln
(

S
E

)

+ (µ− 1
2
σ2)(T − s) + (r − 1

2
σ̃2)(s− t)

]2

2(σ2(T − s) + σ̃2(s− t))

τ ′(τ − τ ′)a =
σ2

8σ̃2
(σ̃2(s− t) + σ2(T − s)) .

With all of these expressions in terms of S and t we finally find that H(S, t) is given by

H(S, t) =
E(σ2 − σ̃2)e−r(T−t0)

σ2
√
2π

∫ T

t

1
√

σ̃2(s− t) + σ2(T − s)

× exp

(

−
[

ln
(

S
E

)

+ (µ− 1
2
σ2)(T − s) + (r − 1

2
σ̃2)(s− t)

]2

2(σ2(T − s) + σ̃2(s− t))

)

ds . (147)

This can be evaluated at a particular time t0 and stock price S0 as desired. Warning:
This result is different from the one presented in the text. One difference is that I have a
1
σ2

in front of everything. Another difference is the factor of 2 (from before). The largest
difference, however, is that the coefficients of T − s and s− t in the square root and in the
denominator of the fraction in the exponent are exchanged. I’ve checked this result several
times and have not found anything wrong with it. If anyone sees anything wrong with this
(or agrees with it) please contact me.

The variance of profit after hedging using implied volatility

To evaluate the variance of the profit when we hedge with implied volatility we need to
calculate the solution to Equation 131 with the final condition now given by P (S, I, T ) = I2.
To solve this we consider a solution of the form

V (S, t, I) = I2 + 2IH(S, t) +G(S, t) ,
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then we have the following derivatives

∂V

∂t
= 2I

∂H

∂t
+
∂G

∂t
∂V

∂S
= 2I

∂H

∂S
+
∂G

∂S
∂2V

∂S2
= 2I

∂2H

∂S2
+
∂2G

∂S2

∂V

∂I
= 2I + 2H .

When we put these into Equation 131 we get

2I

[

∂H

∂t
+

1

2
σ2S2∂

2H

∂S2
+ µS

∂H

∂S
+

1

2
(σ2 − σ̃2)e−r(t−t0)S2Γi

]

+

[

∂G

∂t
+

1

2
σ2S2∂

2G

∂S2
+ µS

∂G

∂S
+

1

2
(σ2 − σ̃2)e−r(t−t0)S2ΓiH

]

= 0 .

If we equate the coefficients of powers of I to zero we get the two differential equations
presented in the book for H(S, t) and G(S, t). Earlier in this section we have shown how to
solve the H equation and thus we know its explicit solution given by Equation 147. To solve
the equation for G we will perform the same change of variables as in Equations 134 and 135.
We will represent G(S, t) in the (x, τ) coordinates as the function g(x, τ). Performing the
desired change of variables we find the equation for g(x, τ) given by

σ2

2

(

−∂g
∂τ

+
∂2g

∂x2

)

+
1

2
(σ2 − σ̃2)e−r(t−t0)S2Γih(x, τ) = 0 ,

where the function h(x, τ) given by Equation 146. Note that the book calls g(x, τ) above
w(x, τ). Using the same transformations that lead to Equation 138, plus the expression for
h(x, τ) given by Equation 146 we get

∂g

∂τ
=
∂2g

∂x2
+

(

E(σ2 − σ̃2)

2σσ̃
√
πτ

)

e−r(T−t0)e−
1
2
d2(x,τ)2

× 1

4
√
π

(

E(σ2 − σ̃2)e−r(T−t0)

σ̃σ

)
∫ τ

0

1√
τ ′

1√
τ − τ ′

exp(c(x, τ, τ ′))
√

a(τ, τ ′)
dτ ′ .

When we simplify the coefficient of the integral, the equation we need to solve for g(x, τ) is

∂g

∂τ
=
∂2g

∂x2
+

(

E2(σ2 − σ̃2)2e−2r(T−t0)

8πσ̃2σ2

)

e−
1
2
d2(x,τ)2

√
τ

∫ τ

0

1√
τ ′

1√
τ − τ ′

exp(c(x, τ, τ ′))
√

a(τ, τ ′)
dτ ′ .

Note that with the above notation we are very explicit in what variables the functions d2,
a, and c depend on. For example, we write d2(x, τ) to indicate that d2 is a function of x
and τ . This will help when we need to treat the integral above as a forcing term and need
to integrate over its independent variables. To do that we will need to replace x with x′, τ
with τ ′, and τ ′ with τ ′′. Using the known solution to this type of partial differential equation
given by 140 we get for g(x, τ) the following

g(x, τ) =

(

E2(σ2 − σ̃2)2e−2r(T−t0)

16π3/2σ̃2σ2

)

×
∫ ∞

−∞

∫ τ

0

1√
τ − τ ′

(

e−
1
2
d2(x′,τ ′)2

√
τ ′

∫ τ ′

0

1√
τ ′′

1√
τ ′ − τ ′′

exp(c(x′, τ ′, τ ′′))
√

a(τ ′, τ ′′)
dτ ′′

)

e−
1
4

(x−x′)2

τ−τ ′ dτ ′dx′ .
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The integral in the above expression is the following triple integral

∫ ∞

−∞

∫ τ

0

∫ τ ′

0

1√
τ ′
√
τ ′′
√
τ − τ ′

√
τ ′ − τ ′′

√

a(τ ′, τ ′′)

× exp

{

−1

2
d2(x

′, τ ′)2 − 1

4

(x− x′)2

τ − τ ′
+ c(x′, τ ′, τ ′′)

}

dτ ′′dτ ′dx′ .

Again we perform the x′ integration by completing the square of the argument of the exponent
with respect to the variable x′. Given what we know about the functional form of d2(x

′, τ ′)
and c(x′, τ ′, τ ′′) via Equations 139 and 143 we can write the argument of the exponential as
−d(x′+f)2+ g̃ where d, f , and g̃ are potential functions of τ , τ ′, and τ ′′. In the Mathematica
file variance single stock.nb we find

d(τ, τ ′, τ ′′) =
σ2

4σ̃2τ ′
+

1

4(τ − τ ′)
+

σ2

4(σ2(τ ′ − τ ′′) + σ̃2τ ′′)
, (148)

and the function g̃(x, τ, τ ′, τ ′′) is given in the Mathematica file. This last expression for d
agrees with the one from the book. Also in that same Mathematica file I verified that the
expression for g̃ derived there agrees with the one given in the book. Once we have these
expressions for d and g̃ determined, performing the x′ integral by recalling Equation 145 we
get

g(x, τ) =

(

E2(σ2 − σ̃2)2e−2r(T−t0)

16π3/2σ̃2σ2

)

×
∫ τ

0

∫ τ ′

0

exp(g̃(x, τ, τ ′, τ ′′))√
τ ′
√
τ ′′
√
τ − τ ′

√
τ ′ − τ ′′

√

a(τ ′, τ ′′)

√

π

d(τ, τ ′, τ ′′)
dτ ′′dτ ′ .

To simplify this we transform the variable τ ′′ in the inner most integral to the variable u
defined as

τ ′′ =
σ2

2
(T − u) .

In that case the differential transforms as dτ ′′ = −σ2

2
du and the point τ ′′ = 0 becomes u = T

and the point τ ′′ = τ ′ becomes the point u = T− 2
σ2
τ ′ and the double integral above becomes

σ
√
π√
2

∫ τ

0

∫ T

T− 2
σ2 τ

′

exp
(

g̃
(

x, τ, τ ′, σ
2

2
(T − u)

))

√
τ ′
√
T − u

√
τ − τ ′

√

τ ′ − σ2

2
(T − u)

√

a
(

τ ′, σ
2

2
(T − u)

)

d
(

τ, τ ′, σ
2

2
(T − u)

)

dudτ ′ .

We now change the integrand from τ ′ to the variable s defined as

τ ′ =
σ2

2
(T − s) .

In that case the differential transforms as dτ ′ = −σ2

2
ds and the point τ ′ = 0 becomes s = T

and the point τ ′ = τ becomes the point s = T − 2
σ2
τ . With this change of variable the

leading coefficient and the limits of the integrals become

σ
√
π√
2

∫ T

T− 2
σ2 τ

∫ T

s

� duds ,
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while the integrand, �, becomes

exp
(

g̃
(

x, τ, σ
2

2
(T − s), σ

2

2
(T − u)

))

√
T − s

√
T − u

√

τ − σ2

2
(T − s)

√
u− s

√

a
(

σ2

2
(T − s), σ

2

2
(T − u)

)

d
(

τ, σ
2

2
(T − s), σ

2

2
(T − u)

)

.

We now want to convert the solution g(x, τ) found above above into the variables (S, t) or
G(S, t). To this end we again use Equations 134 and 135 and find

G(S, t) =

(

E2(σ2 − σ̃2)2e−2r(T−t0)

16πσ̃2σ2

)

×
∫ T

t

∫ T

s

exp

(

g̃

(

ln

(

S

E

)

+ (µ− 1

2
σ2)(T − t),

σ2

2
(T − t),

σ2

2
(T − s),

σ2

2
(T − u)

))

× 1√
T − s

√
T − u

√
s− t

√
u− s

× 1
√

a
(

σ2

2
(T − s), σ

2

2
(T − u)

)

d
(

σ2

2
(T − t), σ

2

2
(T − s), σ

2

2
(T − u)

)

. (149)

In this expression the function g̃(x, τ, τ ′, τ ′′) is given in the Mathematica file, the function
a(τ ′, τ ′′) is given by Equation 142 and d(τ, τ ′, τ ′′) is given by Equation 148.

Warning: This result is similar in form but somewhat different than the result the book has.
I have not had time to compare the two versions and see if there are differences. If anyone
sees anything wrong with what I have done above (or think it is correct) please contact me.
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Fixed-Income Products and Analysis

Notes on bootstraping with discrete data

To compute the yield y2 we use

ZM
2 = e−y1(T1−t)e−y2(T2−t) = ZM

1 e
−y2(T2−t) ,

so that y2 is given by

y2 = − log(ZM
2 /Z

M
1 )

T2 − T1
.

This expression is not implemented in the excel example given in the book. Instead the
above expression is written as

y2 =
− log(ZM

2 ) + log(ZM
1 )

T2 − T1

=
− log(ZM

2 )

T2−t (T2 − t) +
log(ZM

1 )

T1−t (T1 − t)

(T2 − t)− (T1 − t)
.

We can replace 2 with i and 1 with i − 1 to get the general recurrence relationship. The

spreadsheet is calculating− log(ZM
i )

Ti−t in column C and Ti−t in column A. So the above expression
above for yi becomes

C(i)A(i)− C(i− 1)A(i− 1)

A(i)− A(i− 1)
,

which is the formula given in the book.
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Swaps

Notes on bootstraping

Since at inception the swap has no value to either party then as argued in the book we have

τrs

N
∑

i=1

Z(t;Ti)− 1 + Z(t;TN) = 0 .

Solving for rs gives

rs =
1− Z(t;TN )

τ
∑N

i=1 Z(t;Ti)
(150)

which is the quoted swap rate. If we assume that rs(T ) is known from the yield curve we
can take N = 1 in the above expression to get

rs(T1) =
1− Z(t;T1)

τZ(t;T1)
.

When we solve that expression for Z(t;T1) we get

Z(t;T1) =
1

1 + τrs(T1)
.

We now consider the case where we assume we have Z(t;Ti) for 1 ≤ i ≤ j and want to
determine Z(t;Tj+1). If we have Z(t;Tj) for 1 ≤ i ≤ j then from Equation 150 with
N = j + 1 we have

rs(Tj+1) =
1− Z(t;Tj+1)

τ
(

∑j+1
i=1 Z(t;Ti)

) .

If we solve for Z(t;Tj+1) in this expression we get

Z(t;Tj+1) =
1− rs(Tj+1)τ

∑j
i=1 Z(t;Ti)

1 + rs(Tj+1)τ
for j = 1, 2, · · · .
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The Binomial Model

Notes on statistics from the binomial random walk

For these examples we first show that if we take the parameters u, v, and p given by

u = 1 + σ
√
δt (151)

v = 1− σ
√
δt (152)

p =
1

2
+
µ
√
δt

2σ
, (153)

then we get the same average asset price change. The expected asset price after one time
step is given by the standard expression for expectations and we have

puS + (1− p)vS =

(

1

2
+
µ
√
δt

2σ

)

(1 + σ
√
δt)S +

(

1

2
− µ

√
δt

2σ

)

(1− σ
√
δt)S

=

[

1

2
+
σ

2

√
δt+

µ
√
δt

2σ
+
µδt

2

]

S +

[

1

2
− σ

2

√
δt− µ

√
δt

2σ
+
µδt

2

]

S

= (1 + µδt)S .

This gives the expected change in the asset of µSδt which has the expected return of µδt
as we expect for a geometric random walk. The expected value in the change in asset price
using the above is then µδtS.

Next if denote the change in the asset price by ∆S (this is not the same ∆ introduced later
in this chapter), we want to determine the variance of ∆S. Since the asset can go up with
probability p to a change in asset value of uS − S = (u − 1)S or down with probability
1 − p to a change in asset value of vS − S = (v − 1)S if it goes down which happens with
probability 1− p. Using these expressions and the definition of the variance we find

Var[∆S] = E[(∆S − E[∆S])2]

= p[(u− 1)S − µδtS]2 + (1− p)[(v − 1)S − µδtS]2

= p(σ
√
δt− µδt)2S2 + (1− p)(−σ

√
δt− µδt)2S2

= p(σ2δt− 2µσδt3/2 + µ2δt2)S2 + (1− p)(σ2δt+ 2µσδt3/2 + µ2δt2)S2

= (σ2δt+ µ2δt2 + (1− 2p)(2µσδt3/2))S2 .

But from what we know about the expressions for p we have that

1− 2p = −µ
√
δt

σ
,

and thus the above becomes

Var[∆S] =

(

σ2δt + µ2δt2 +−µ
√
δt

σ
(2µσδt3/2)

)

S2

= S2(σ2δt− µ2δt2) .
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As δt → 0 this becomes S2σ2δt so that Var[∆S] ≈ S2σ2δt and thus Var
[

∆S
S

]

≈ σ2δt so we

see that the standard deviation of returns is approximately σ
√
δt.

Notes on the value of an option

With the derivation of the hedging amount ∆ need to make the final value of our portfolio
equal independent of what value the stock takes

∆ =
V + − V −

uS − vS
=
V + − V −

(u− v)S
, (154)

there are two ways we can evaluate the final portfolio value. The first where we assume that
the stock goes up gives

V + −∆uS = V + − u

(

V + − V −

u− v

)

=
−vV + + uV −

u− v
, (155)

and the second wen we assume that the stock goes down is

V − −∆vS = V − − v

(

V + − V −

u− v

)

=
−vV + + uV −

u− v
. (156)

which are the same as they must be. With the definition of ∆ given by Equation 154 we
find that the original portfolio Π has a value given by

Π = V −∆S = V − V + − V −

u− v
. (157)

Asserting that the new portfolio is given by Π + δΠ = Π + rΠδt = (1 + rδt)Π and setting
this equal to Equation 156 gives

(1 + rδ)Π =
−vV + + uV −

u− v
.

But putting in what we know about Π via Equation 157 into the left-hand-side of the above
gives

(1 + rδt)

(

V − V + − V −

u− v

)

= V − − v

(

V + − V −

u− v

)

.

Solving for (1 + rδt)V in the above we have

(1 + rδt)V = (1 + rδt)

(

V + − V −

u− v

)

+
uV − − vV +

u− v
. (158)

If we write the right-hand-side as linear function of the two prices V − and V + we get

(1 + rδt)V =

(

1 + rδt

u− v
− v

u− v

)

V + +

(

−1 + rδt

u− v
+

u

u− v

)

V −

=

(

1 + rδt− v

u− v

)

V + +

(−1− rδt+ u

u− v

)

V − .
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Recalling what we know about u and v we see that u− v = 2σ
√
δt and the above equals

(1 + rδt)V =

(

1 + rδt− (1− σ
√
δt)

2σ
√
δt

)

V + +

(

−1− rδt+ 1 + σ
√
δt)

2σ
√
δt

)

V −

=

(

1

2
+
r
√
δt

2σ

)

V + +

(

1

2
− r

√
δt

2σ

)

V − (159)

= p′V + + (1− p′)V − , (160)

were we have taken

p′ ≡ 1

2
+
r
√
δt

2σ
. (161)

Notes on the continuous time limit

Consider the small time step expansion or Taylor series of the values for V + and V −. We
have for the value of u and v we have been considering that

V + = V (uS, t+ δt) = V ((1 + σ
√
δt)S, t + δt) = V (S + σS

√
δt, t+ δt)

= V (S, t) + VSσ
√
δtS +

1

2
VSSσ

2δtS2 + Vtδt + · · ·

V − = V (vS, t+ δt) = V ((1− σ
√
δt)S, t + δt) = V (S − σS

√
δt, t+ δt)

= V (S, t)− VSσ
√
δtS +

1

2
VSSσ

2δtS2 + Vtδt+ · · · .

Then under these approximations Equation 154 can now be written in the limit of small
time step δt→ 0 as

∆ =
V + − V −

(u− v)S
≈ 2VSσ

√
δtS

2σ
√
δtS

= VS .

In the same way Equation 159 under this limit becomes

(1 + rδt)V =

(

1

2
+
r
√
δt

2σ

)

(V + σ
√
δtSVS +

1

2
σ2δtS2VSS + Vtδt)

+

(

1

2
− r

√
δt

2σ

)

(V − σ
√
δtSVS +

1

2
σ2δtS2VSS + Vtδt)

= V +
1

2
σ2δtS2VSS + Vtδt +

r
√
δt

2σ
2σ

√
δtSVS .

When we simplify the above we get

Vt +
1

2
σ2S2VSS + rSVS − rV = 0 .
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Notes on another parametrization

We start with a geometric random walk in continuous time which is given by

dS = µSdt+ σSdX .

This equation has been seen before and has a solution given by S(t) given by Equation 21.
We need to pick the parameters u, v, and p such that we have the same discrete expectation
after the time step δt as the continuous process or E[S(δt)]. That means that

puS + (1− p)vS = E[S(δt)] = E
[

Se(µ−
1
2
σ2)δt+σφ

√
δt
]

= Se(µ−
1
2
σ2)δtE

[

eσφ
√
δt
]

.

We next need to evaluate the expectation over the Gaussian random variable φ.

E
[

eσφ
√
δt
]

=

∫ ∞

−∞
eσφ

√
δt

(

e−
1
2
φ2

√
2π

)

dφ .

To evaluate this integral we group everything into the same exponent and complete the
square by writing the exponent as

−1

2
φ2 + σ

√
δtφ = −1

2
(φ− σ

√
δt)2 +

1

2
σ2δt .

With this substitution the above expectation becomes

E
[

eσφ
√
δt
]

=
1√
2π
e

1
2
σ2δt

∫ +∞

−∞
e−

1
2
(φ−σ

√
δt)2dφ = e

1
2
σ2δt .

Using this the total expectation we want to evaluate is given by multiplying this by Se(µ−
1
2
σ2)δt

to get
puS + (1− p)vS = Seµδt ,

which if we divide by S gives
pu+ (1− p)v = eµδt ,

or solving for p we have

p =
eµδt − v

u− v
, (162)

the expression we were to show.

Next we want to make our continuous process have the same variance at the time δt that
our discrete binomial process has. To do that we first evaluate the expectation of S(δt)2 for
our continuous process and then use the fact that Var[S(δt)] = E[S(δt)2] − E[S(δt)]2. We
find

E[S(δt)2] = E
[

S2e2(µ−
1
2
σ2)δt+2σφ

√
δt
]

= S2e2(µ−
1
2
σ2)δtE

[

e2σφ
√
δt
]

,

which is the same type of expectation we have evaluated above by taking σ → 2σ and we
see that it evaluates to

S2e(2µ+σ
2)δt .
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After having computed expected value of S(δt) and of S(δt)2 above the variance of the
continuous random walk is

Var[S(δt)] = E[S(δt)2]− E[S(δt)]2

= e(2µ+σ
2)δtS2 − e2µδtS2

= S2e2µδt(eσ
2δt − 1) . (163)

To compute the variance of S(δt) under the discrete binomial process requires the calculation
of E[S(δt)2]. Using the definition of our binomial tree we find this expectation given by

E[S(δt)2] = p(uS)2 + (1− p)(vS)2

= (pu2 + (1− p)v2)S2 . (164)

Using this, the discrete variance is then given by

Var[S(δt)] = (pu2 + (1− p)v2)S2 − S2e2µδt

= S2(pu2 + (1− p)v2 − e2µδt) . (165)

Setting this expression equal to the continuous variance expression in Equation 163 requires

pu2 + (1− p)v2 − e2µδt = eσ
2δt+2µδt − e2µδt .

This then becomes
pu2 + (1− p)v2 = e(2µ+σ

2)δt , (166)

which is the equation in the book. Solving this equation for p we get

p =
e(2µ+σ

2)δt − v2

u2 − v2
. (167)

Dividing Equation 162 by Equation 167 we obtain

(

eµδt − v

u− v

)(

u2 − v2

e(2µ+σ2)δt − v2

)

= 1 .

This allows us to solve for u+ v and we find

u+ v =
e(2µ+σ

2)δt − v2

eµδt − v
,

When we multiply by eµδt − v on both side this expression becomes

(u+ v)eµδt − uv − v2 = e(2µ+σ
2)δt − v2 ,

or
(u+ v)eµδt − uv = e(2µ+σ

2)δt .

If we now enforce the constraint the the up returns u and the down returns v are equal in
magnitude that is we take u = 1

v
and obtain (after multiplying by ve−µδt) the equation

v2 − (e−µδt + e(µ+σ
2)δt)v + 1 = 0 .
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If we define a variable A as

A =
1

2

(

e−µδt + e(µ+σ
2)δt
)

, (168)

we obtain a quadratic equation for v given by

v2 − 2Av + 1 = 0 . (169)

This has solutions given by the quadratic formula. We find

v = A±
√
A2 − 1 . (170)

Note that u since it equals 1/v is then given by

u =
1

v
=

1

A±
√
A2 − 1

=

(

1

A±
√
A2 − 1

)(

A∓
√
A2 − 1

A∓
√
A2 − 1

)

= A∓
√
A2 − 1 . (171)

Since v < u we must take the negative sign in the expression 170 for v and the positive sign
for u in the expression 171. This is the solution for u and v given in the book. If we consider
the case where δt is small we can Taylor expand the expressions for u, v, and p. We do that
in the Mathematica file chap 15 algebra.nb where we find that

u ≈ 1 + σδt1/2 +
1

2
σ2δt+O(δt3/2)

v ≈ 1− σδt1/2 +
1

2
σ2δt+O(δt3/2)

p ≈ 1

2
+

(µ− 1
2
σ2)

2σ
δt1/2 +O(δt3/2) .
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How accurate is the normal approximation?

Notes on the empirical probability of a 20% SPX fall

In this section the empirical probability is just the number of times this event happened
(once) divided by the the number of times we could have had that event happen 24× 252 =
6048, this fraction 1

6048
= 0.00016534 as claimed.

Notes on the theoretical probability of a 20% SPX fall

If we estimate the daily volatility to be σdaily = 0.0106, then the annualized volatility is given
by

σ2
yearly = 252σ2

daily = 0.02831 ,

which when we take the square root gives σyearly = 0.16826 the quoted 16.8% annual volatil-
ity. Then to compute the theoretical probability that a random sample from a normal
with zero mean and standard deviation of 0.0106 is less than −0.2 we need to evaluate
the cumulative normal distribution at the point −0.2 or in R notation we need to evalu-
ate pnorm(-0.2,mean=0,sd=0.0106). When we evaluate this expression using R we get
1.046805 10−79.
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Investment Lessons from Blackjack and Gambling

Notes on the Kelly Criterion

Assume that we can bet on the ith outcome of an experiment that if we bet an amount A
will pay out φiA. Here φi is negative if we “loose” and we have to pay money while φi is
positive if we “win” and we get to collect money. If we start with a portfolio valued at V0
and we bet a fraction f of it after the bet will will have

V0 + φi(fV0) = V0(1 + fφi) .

If we place M bets sequentially betting a fraction f of our current portfolio each time, then
the total portfolio value after these M bets starting with V0 is given by by

V (f) = V0

M
∏

i=1

(1 + fφi) . (172)

This is a function of the fraction to bet f . We evaluate the above expression for two values
of f in Figure 2. For small values of f the function V (f) grows very slowly, while for larger
values of f the total portfolio value V (f) can reach 0 before the time step equals M . We
expect that there must be an optimal f such that we maximize some function of V (f) after
M time steps.

Taking logarithms and then the expectation leads us to consider evaluating E[log(1 + φf)]
(I have dropped the experiment index i on φ), which we do by first expanding log(1+φf) in
a Taylor series and then taking the expectations. Recall that the Taylor series of log(1 + x)
is given by

log(1 + x) =

∞
∑

k=1

1

k
(−1)k+1xk = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + · · · (173)

From this we have

log(1 + φf) = φf − 1

2
φ2f 2 + · · · .

Since E[φ] = µ and E[φ2] = σ2 + E[φ]2 = σ2 + µ2, the expectation of this expression is

E[log(1 + φf)] ≈ µf − 1

2
(σ2 + µ2)f 2 . (174)

To maximize E[log(1 + φf)] with respect to f , we take the derivative with respect to f , set
the result equal to zero, and solving for f to get

µ− (σ2 + µ2)f = 0 or f =
µ

σ2 + µ2
.

Using this value we find that the maximum expectation is given by

max
f

(E[log(1 + φf)]) =
µ2

σ2 + µ2
− 1

2

µ2

σ2 + µ2
=

1

2

(

µ2

σ2 + µ2

)

.
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Figure 2: Two sample paths when we bet a large f = 0.8 or a small f = 0.1 fraction of our
wealth at each time step. Note that the probabilities are set such that we should win in the
long run and you see the small bet curve slowly increase. The large bet curve takes a serious
loss which shrinks the portfolio to zero and we cannot play any more.

Notes on arbitrage in horse betting

We will place bets on all N horses such that the total bet made is one unit i.e.
∑N

i=1wi = 1.
Then if horse j wins we will win back an amount (qj + 1)wj, where qj is set by the bookies.
This is after having paid 1 to place all N bets (the other N − 1 bets return 0). Thus we will
have an arbitrage opportunity if no matter which horse wins we make a positive profit if

(qj + 1)wj − 1 > 0 or wj >
1

qj + 1
,

for all j. Summing both sides of the above for all bets gives

N
∑

i=1

wi >

N
∑

i=1

1

qi + 1
.

Since
∑N

i=1wi = 1 this means for arbitrage that 1 >
∑N

i=1
1

qi+1
must hold. If the opposite

inequality holds then there is no arbitrage.

Notes on how to bet

When we bet wi on horse i for i = 1, 2, . . . , N then we have an initial outlay of money given
by
∑N

i=1wi = 1 dollars. If we assume that horse i will win with probability pi where due to

69



our bet on that horse we will win an amount W = wi(qi + 1) so that the average amount
won will thus be

E[W ] =
N
∑

i=1

piwi(qi + 1) .

Here W is a discrete random variable with probability distribution of pi. Since we have to
outlay an amount 1 to place all of these N bets the expected total amount denoted by m,
we will have after these N bets is given by

m ≡
(

N
∑

i=1

piwi(qi + 1)

)

− 1 .

The variance of these wins is

σ2 = E[(W − W̄ )2] =

N
∑

i=1

pi[wi(qi + 1)− (m+ 1)]2 ,

since the expected value ofW is
∑N

i=1 piwi(qi+1) = m−1. We now consider some procedures
that would yield “optimal” betting solutions for the example odds qi and probabilities pi
given.

• In the case where we want to maximize the expected winnings or m we will pick the
index j that makes pi(qi + 1) the largest and bet all our money on that horse. In the
MATLAB script max expected return.m we verify that this strategy has m = 0.4 and
σ = 2.80.

• In the case where we would want to minimize the standard deviation. In the MATLAB
script min std dev.m we verify that this strategy produces has m = −0.6216 and
σ = 5.6064 10−5 with a weight vector of

0.0631, 0.0541, 0.1892, 0.1892, 0.1261, 0.1261, 0.1261, 0.1261

This matches quite well with what the book obtained. It would perhaps be better to
use the logistic transformation (see the next item) in performing this optimization.

• In this case we want to maximize the return divided by the standard deviation. To do
this and still use the unbounded MATLAB solver we will first map the infinite range
(−∞,+∞) to the range (0, 1). To do this we will use the logistic transformation, in
that we obtain the needed weights wi from variables with an infinite range xi using

wi =
exi

1 +
∑N−1

l=1 exl
for i = 1, 2, · · · , N − 1

wN = 1−
N−1
∑

l=1

wl =
1

1 +
∑N−1

l=1 exl
.

Then we can optimize over the xi’s. In the MATLAB script max adj return.m we find
m = 0.3082 and σ = 1.6352 and weights given by
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0.4590, 0.5410, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

These results match quite will thoese found in the book.
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Portfolio Management

Notes on diversification

In this section we assume we are considering a portfolio, denoted by Π, of N stocks. We will
let wi be the number of shares of the ith security valued at a per share price of Si. Then the
portfolio’s value at this time is given by

Π =

N
∑

i=1

wiSi . (175)

If each stock Si undergoes a return of Ri then their value changes to Si(1+Ri) and this new
portfolio has a value Π + δΠ give by

Π + δΠ =

N
∑

i=1

wiSi(1 +Ri) .

Thus the portfolio change, δΠ, is given by
∑N

i=1wiSiRi and the return on our portfolio over
this time interval is given by

δΠ

Π
=

1

Π

N
∑

i=1

wiSiRi =

N
∑

i=1

(

wiSi
Π

)

Ri =

N
∑

i=1

WiRi , (176)

where we have defined the portfolio weights Wi as

Wi ≡
wiSi
Π

=
wiSi

∑N
l=1wlSl

, (177)

and we have used Equation 175 to replace the symbol Π with a summation. Note that these
weights Wi, by construction, sum to one. The mean portfolio return (if our time frame for
the individual returns Ri is T ) is computed as

µΠ =
1

T
E

[

δΠ

Π

]

=
1

T

N
∑

i=1

WiE[Ri] =
1

T

N
∑

i=1

WiTµi =

N
∑

i=1

Wiµi , (178)

while the variance of our portfolio’s returns over T are computed is

σ2
Π =

1

T
Var

[

δΠ

Π

]

=

N
∑

i=1

N
∑

j=1

WiWjρijσiσj . (179)

Notes on return risk characteristics in a portfolio

As a simple example of the meaning of the terms “the efficient frontier”, consider the case
where we have just two stocks say A and B, where we own a portfolio fraction W of the
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first and correspondingly a portfolio fraction 1 −W of the other. Then the average return
on this two stock portfolio from Equation 178 is given by

µΠ =WµA + (1−W )µB ,

and the variance of this portfolio from Equation 179 is

σ2
Π = W 2σ2

A + 2W (1−W )ρσAσE + (1−W )2σ2
E .

We can plot the points (σΠ(W ), µΠ(W )) as a function of W for various portfolio weights
i.e. 0 ≤ W ≤ 1. This gives us the set of possible values for (σΠ, µΠ) we could obtain
corresponding to different values of W . In the two stock case given a desired (and fixed)
value for the portfolio return, µΠ, from the formula above gives an explicit value forW which
then explicitly determines the value of σΠ. In the general case with N instruments there are
many settings forWi which could give the same desired portfolio mean return µΠ. We would
most naturally want to select the weights that give a mean value of µΠ while minimizing
the value of σΠ. This leads to the efficient frontier in the general case. That is, we want to
determine the values for Wi such that

∑N
i=1Wi = 1 and that the value of µΠ given by

µΠ =

N
∑

i=1

Wiµi ,

is fixed. Subject to these two constraints we want to then minimize the value of σΠ given by
Equation 179. Note is seems we could also frame the asset allocation problem as to specify
the values of Wi such that they sum to 1 and that maximize the Sharpe ratio

µΠ

σΠ
.

Notes on the Capital Asset Pricing Model (CAPM)

Under the Capital Asset Pricing Model (CAPM) the ith stocks return is modeled as

Ri = αi + βiRM + ǫi , (180)

and its variance σ2
i , is given by

σ2
i = β2

i σ
2
M + e2i . (181)

Here RM is the “market” return and σ2
M is the market variance over the same return time

frame. With these returns we see that the expected return for the ith stock is given by

µi = αi + βiµM ,

and our expected portfolio return by Equation 178 is then given by

µΠ =

N
∑

i=1

Wiαi +

(

N
∑

i=1

Wiβi

)

µM .
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Here µM is the expected market return. We can define the portfolio values of α and β as

αΠ =

N
∑

i=1

Wiαi and βΠ =

N
∑

i=1

Wiβi ,

so that µΠ = αΠ + βΠµM . The variance of our portfolio’s return can be computed in the
CAPM framework also. We find from the expression for δΠ

Π
of

δΠ

Π
=

N
∑

i=1

WiRi ,

that [3]

Var

[

δΠ

Π

]

=

N
∑

i=1

N
∑

j=1

WiWjCov(Ri, Rj) .

Thus we need to compute Cov(Ri, Rj). We find

Cov(Ri, Rj) = E[(Ri − R̄i)(Rj − R̄j)]

= E[(βi(RM − µM) + ǫi)(βj(RM − µM) + ǫj)]

= βiβjE[(RM − µM)2] + E[ǫiǫj ]

= βiβjσ
2
M + δije

2
i ,

where δij is the Kronecker delta. Thus using that we find

σ2
Π =

(

N
∑

i=1

N
∑

j=1

WiWjβiβj

)

σ2
M +

N
∑

i=1

W 2
i e

2
i .

If we assume that Wi ∼ 1
N

then the first term above dominates since

O

(

N
∑

i=1

W 2
i e

2
i

)

≈ O

(

1

N2

N
∑

i=1

1

)

= O

(

1

N

)

O

(

N
∑

i=1

N
∑

j=1

WiWjβiβjσ
2
M

)

≈ O

(

1

N2
N2

)

= O (1) .
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Value at Risk

Notes on VaR for a single asset

Recall that the variance of return of our stock over a time length of δt is given by

Var

[

δS

S

]

= σ2δt .

The variance of δS over this time is then given by

Var[δS] = S2σ2δt .

The standard deviation of δS over this time is the square root of the above and we get

Std [δS] = Sσδt1/2 .

To compute the probability that a stock moves less than some number of standard deviations
from is starting value of S we introduce the cumulative normal distribution function α(·)
where for example if we desire a confidence of 99% we take c = 0.99 and find that α(1− c) =
α(0.01) = −2.326. Thus with a probablity of 0.01% we will loose at least the amount

−2.326Sσδt1/2 .

This is the potential loss of one share of the stock. If we actually hold ∆ shares of the stock
we must multiply the above number by ∆. If we want to evaluate δt to be 1 week where σ2

is the annualized variance then δt = 1
52

since there are 52 weeks in one year.

If there is a drift to the distribution of returns then we assume that the distribution of
returns δS

S
is normal with a mean of µδt and a variance of σ2δt. Then the lower limit of the

confidence interval of δS
S

is given by

µδt− α(1− c)σδt1/2 .

The lower limit of δS over this length of time δt is then given by multiplying the above by
S and if we have ∆ shares we get

VaR = ∆S(µδt− α(1− c)σ
√
δt) .

Notes on the Delta-Gamma approximation

If we assume that the change in asset price S over the time δt is given by

δS = µSδt+ σSδt1/2φ ,

where φ is a random draw from a standard normal. Then the square of δS is given by

δS2 = µ2S2δt2 + 2µσS2φδt3/2 + σ2S2φ2δt = σ2S2φ2δt+O(δt3/2) .
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Then performing a Taylor expansion of V (S, t) our portfolio V changes during δt as

δV =
∂V

∂S
(µSδt+ σSδt1/2φ) +

1

2

∂2V

∂S2
σ2S2φ2δt+

∂V

∂t
δt

=
∂V

∂S
σSφδt1/2 +

(

∂V

∂S
µS +

1

2

∂2V

∂S2
σ2S2φ2 +

∂V

∂t

)

δt+ · · ·

= ∆σSφδt1/2 + δt

(

∆µS +
1

2
Γσ2S2φ2 + θ

)

+ · · · . (182)

We see that δV is a quadratic in φ where φ ∼ N(0, 1). We can write δV as a function of φ
by completing the square to find

δV =
1

2
Γσ2S2δt

(

φ2 +
2∆

ΓσSδt1/2
φ

)

+ δt(∆µS + θ)

=
1

2
Γσ2S2δt

(

φ2 +
2∆

ΓσSδt1/2
φ+

∆2

Γ2σ2S2δt

)

− ∆2

2Γ
+ δt(∆µS + θ)

=
1

2
Γσ2S2δt

(

φ+
∆

ΓσSδt1/2

)2

− ∆2

2Γ
+ δt(∆µS + θ)

Note that the last three terms are nonrandom and thus is not subject to risk. Depending on
the sign of Γ the change in δV will be larger or small than this deterministic number. We
see that

δV ≥ −∆2

2Γ
+ δt(∆µS + θ) if Γ > 0 .

Thus in this case we have a lower bound on our potential loss δV . While if Γ < 0 we find

δV ≤ −∆2

2Γ
+ δt(∆µS + θ) if Γ < 0 .

and there is no lower bound. It stands to reason that all things being equal one desires
portfolios that have a positive Γ.
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Chapter 23: Barrier Options

That SαVBS(X/S, t) is also a solution to Black-Scholes equation

As discussed we now show that the expression

Ṽ (S, t) ≡ S1− 2r
σ2 VBS

(

X

S
, t

)

,

where VBS is a solution to the Black-Scholes equation is also a solution to the Black-Scholes
equation. To do this, consider the needed derivatives (using the substitution ξ ≡ X

S
when

needed)

Ṽt = S1− 2r
σ2
∂VBS

∂t

ṼS =

(

1− 2r

σ2

)

S− 2r
σ2 VBS + S1− 2r

σ2
∂VBS

∂ξ
·
(

−X

S2

)

=

(

1− 2r

σ2

)

S− 2r
σ2 VBS −XS−1− 2r

σ2
∂VBS

∂ξ

ṼSS =

(

1− 2r

σ2

)(

−2r

σ2

)

S−1− 2r
σ2 VBS +

(

1− 2r

σ2

)

S− 2r
σ2
∂VBS

∂ξ
·
(

−X

S2

)

−X

(

−1− 2r

σ2

)

S−2− 2r
σ2
∂VBS

∂ξ
−XS−1− 2r

σ2
∂2VBS

∂ξ2
·
(

−X

S2

)

= −2r

σ2

(

1− 2r

σ2

)

S−1− 2r
σ2 VBS +

4Xr

σ2
S−2− 2r

σ2
∂VBS

∂ξ
+X2S−3− 2r

σ2
∂2VBS

∂ξ2

we will put this into the left-hand-side of the Black-Scholes Equation 26 to get

S1− 2r
σ2
∂VBS

∂t

+
1

2
σ2

[

−2r

σ2

(

1− 2r

σ2

)

S1− 2r
σ2 VBS +

4Xr

σ2
S− 2r

σ2
∂VBS

∂ξ
+X2S−1− 2r

σ2
∂2VBS

∂ξ2

]

+ r

[(

1− 2r

σ2

)

S1− 2r
σ2 VBS −XS− 2r

σ2
∂VBS

∂ξ

]

− rS1− 2r
σ2 VBS .

Number each term above with a VBS in it using the numbers 1 . . . 7. Note that if we add the
terms numbered 2 and 5 we get zero. Combining the rest of the terms we get

S1− 2r
σ2

[

∂VBS

∂t
+

1

2
σ2X2S2∂

2VBS

∂ξ2
+ rXS

∂VBS

∂ξ
− rVBS

]

When we replace XS with ξ we see that the above is the Black-Scholes equation in the

variables ξ and t and thus vanishes showing that the original expression S1− 2r
σ2 VBS

(

X
S
, t
)

is
a solution to the Black-Scholes equation. Note that the solution to the down and out call
given by

V (S, t) = VBS(S, t)−
(

S

Sd

)1− 2r
σ2

VBS

(

S2
d

S
, t

)

, (183)
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satisfies the correct final conditions. Since we must have Sd < S we see that Sd

S
< 1 thus

S2
d

S
< Sd < E ,

where we have assumed that Sd is below E. Using this we get when t = T that the expression

VBS

(

S2
d

S
, t
)

takes the value

VBS

(

S2
d

S
, T

)

= max

(

S2
d

S
− E, 0

)

= 0 ,

and we have shown that the final value for a down-and-out call option equals VBS(S, T ) as
it should.

Notes on Hedging Barrier Options

Here we duplicate some of the statements made in the book. For example, we take D = 0,
r = 0, and S = Sd in Equation 36 we find that C, d1, and d2 are given by

C(Sd, t) = SdN(d1)− EN(d2)

d1 =
log(Sd/E) +

1
2
σ2(T − t)

σ
√
T − t

d2 =
log(Sd/E)− 1

2
σ2(T − t)

σ
√
T − t

.

While in Equation 44 with strike take to be
S2
d

E
(again D = r = 0) we have

P (Sd, t) = −SdN(−d̃1) +
S2
d

E
N(−d̃2)

d̃1 =
log
(

SdE
S2
d

)

+ 1
2
σ2(T − t)

σ
√
T − t

= −d2

d̃2 =
log
(

E
Sd

)

− 1
2
σ2(T − t)

σ
√
T − t

= −d1 .

Thus using these last expressions for d̃1 and d̃2 in the formula for P (Sd, t) we see that

P (Sd, t) = −SdN(d2) +
S2
d

E
N(d1) =

(

Sd
E

)

(SdN(d1)−EN(d2)) =
Sd
E
C(Sd, t) .

This last equation says that we need to hedge each call with E
Sd

puts (note the reciprocal)
and we are perfectly hedged at S = Sd and when r = 0.

78



Chapter 25 (Asian Options)

Notes on discretely sampled averages

For a discretely sampled geometric average we have

Ai = exp

(

1

i

i
∑

k=1

log(S(tk))

)

= exp

(

1

i

i−1
∑

k=1

log(S(tk)) +
1

i
log(S(ti))

)

= exp

(

i− 1

i
log(Ai−1) +

1

i
log(S(ti))

)

.

Thus continuity of the option price across the sampling date is given by

V (S,A, t−i ) = V

(

S, exp

(

i− 1

i
log(A) +

1

i
log(S)

)

, t+i

)

.

Notes on exponentially weighted and other averages

For the given expression of I note that we can write it as

I = λ

∫ t

−∞
e−λ(t−τ)s(τ)dτ = e−λtλ

∫ t

−∞
eλτs(τ)dτ ,

from which we can more easily compute the differential of this expression dI. We find

dI = −λe−λt
(

λ

∫ t

−∞
eλτs(τ)dτ

)

dt+ e−λtλ(eλtS)dt

= −λIdt + λSdt

= λ(S − I)dt ,

the claimed expression. Note that with this type of averaging by following the discussion
from earlier in the book we have a partial differential equation for the option value V given
by

∂V

∂t
+ λ(S − I)

∂V

∂I
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 .

In the discrete case for the jump conditions we need the expression Ii given recursively by
Ii = F (S(ti), Ii−1, i). In this case, this is computed as

Ii ≡ λ
i
∑

k=−∞
e−λ(ti−tk)S(tk) = λ

[

i−1
∑

k=−∞
e−λ(ti−tk)S(tk) + S(ti)

]

= λ

[

e−λ(ti−ti−1)
i−1
∑

k=−∞
e−λ(ti−1−tk)S(tk) + S(ti)

]

= λ

[

e−λ(ti−ti−1)

(

Ii−1

λ

)

+ S(ti)

]

= e−λ(ti−ti−1)Ii−1 + λS(ti) .
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We can derive the jump conditions for V using this expression in the following way

V (S, I, t−i ) = V (S, e−λ(t
+
i −ti−1)I + λS, t+i ) .

Notes on similarity reductions

For the reduction discussed in the book we introduce the two variables I and R given by

I ≡
∫ t

0

S(τ)dτ and R ≡ S
∫ t

0
S(τ)dτ

=
S

I
.

With these two variables, we can write the running payoff of a continuously sampled arith-
metic strike option as

max

(

S − 1

t

∫ t

0

S(τ)dτ, 0

)

= max

(

RI − I

t
, 0

)

= Imax

(

R− 1

t
, 0

)

.

Based on the fact that in the payoff we can factor I outside of another function (namely
max

(

R− 1
t
, 0
)

) we propose an option price V of the following form

V = I W (R, t) ,

with again R = S
I
. Then to find the differential equation thatW satisfies we need to compute

the derivatives of V , needed by the Black-Scholes equation, but in terms of derivatives of
W . We find

∂V

∂t
= I

∂W

∂t
∂V

∂S
= I

∂W

∂R

(

1

I

)

=
∂W

∂R

∂2V

∂S2
=

∂

∂S

(

∂W

∂R

)

=
∂

∂R

(

∂W

∂R

)(

∂R

∂S

)

=
1

I

∂2W

∂R2

∂V

∂I
= W + I

∂W

∂R

∂R

∂I
=W + I

∂W

∂R

(

− S

I2

)

=W − R
∂W

∂R
.

Therefore with these derivatives the Black-Scholes equation becomes (in terms of W )

I
∂W

∂t
+RI

(

W − R
∂W

∂R

)

+
1

2
σ2 I

2R2

I

∂2W

∂R2
+ rIR

∂W

∂R
− rIW = 0 .

The second term above comes from the S ∂V
∂I

term needed to included the state variable I.
If we divide by I we get

∂W

∂t
+R

(

W −R
∂W

∂R

)

+
1

2
σ2R2∂

2W

∂R2
+ rR

∂W

∂R
− rW = 0 ,

or changing the order of various terms and grouping we finally have

∂W

∂t
+

1

2
σ2R2∂

2W

∂R2
+R(r − R)

∂W

∂R
− (r − R)W = 0 , (184)

the same as in the book.
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Put-call parity for the European average strike option

In this subsection we derive put-call parity relationships for European average strike options.
To begin consider the payoff at expiration, Π(T ), on the suggested portfolio of one European
average strike call held long and one European average put held short

Π(T ) = I max

(

1− 1

T
, 0

)

− Imax

(

1

T
− 1, 0

)

= S − I

T
.

Now consider what type of instrument will provide a payoff given by the second term − I
T
.

Since the continuously sampled average strike option has a value that can be expressed as
V (S, I, t) = IW (R, t), where W (R, t) is a solution to Equation 184. At expiration we would
like to construct a continuously sampled average strike option that has a payoff given by
− I
T
. This means that when t = T the function W (R, t) must have a final condition that

satisfies IW (R, T ) = − I
T
or

W (R, T ) = − 1

T
. (185)

With this final condition the solution we seek for W (R, t) must also satisfy the standard
boundary conditions of

W (0, t) = 0 and W (R, t) ∼ R as R → ∞ .

To find a functional form for W (R, t) that will satisfy these requirements we propose a
W (R, t) of the specific form given by

W (R, t) = a(t)R + b(t) . (186)

Note that for the expression for the payoff in Equation 185 to hold true at t = T when
W (R, t) is as Equation 186 we need

W (R, T ) = a(T )R + b(T ) = − 1

T
,

which requires that we take a(T ) = 0 and b(T ) = − 1
T
. Now to put this proposed functional

form for W (R, t) from Equation 186 into Equation 184 requires we compute

∂W

∂t
= a′(t)R + b′(t)

∂W

∂R
= a(t)

∂2W

∂R2
= 0 ,

so that Equation 184 evaluates to

a′(t)R + b′(t) +R(r − R)a(t)− (r − R)(b(t) + a(t)R) = 0 ,

or grouping powers of R and simplifying we get

(a′(t) + b(t))R + (b′(t)− rb(t)) = 0 . (187)
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Equating the powers R on both sides of this equation we find for the coefficient of the zero
power of R to vanish requires that

b′(t) = rb(t) so b(t) = C0e
rt .

When we then require that b(T ) = − 1
T
we find

− 1

T
= C0e

rT or C0 = − 1

T
e−rT ,

which means that the function b(t) is given by

b(t) = − 1

T
e−r(T−t) . (188)

Using this result and equating the constant terms in Equation 187 requires that the function
a(t) must satisfy

a′(t) = −b(t) = 1

T
e−r(T−t) .

On integrating this we find a(t) given by

a(t) =
1

rT
e−r(T−t) + C1 .

To evaluate C1 we recall that a(T ) = 0 requires that C1 = − 1
rT

so that the functional form
for a(t) is given by

a(t) = − 1

rT
(1− e−r(T−t)) . (189)

Using these we conclude that the put-call parity relationship for average strike options is

C − P = S + V (S, I, t) = S + IW (R, t)

= S + I(b(t) + a(t)R)

= S + I

(

− 1

T
e−r(T−t)

)

+ IR

(

− 1

rT
(1− e−r(T−t))

)

= S − S

rT
(1− e−r(T−t))− 1

T
e−r(T−t)

∫ t

0

S(τ)dτ , (190)

using IR = S.

Notes on the square root of three rule

In this section we simply compute the value of the variable σ̄2
G when σ is a constant. We

compute

σ̄2
G =

1

T

∫ T

0

σ(t)2
(

T − t

T

)2

dt =
σ2

T

∫ T

0

(

T − t

T

)2

dt .

Let v = T−t
T

so that dv = −dt
T

and the above becomes

σ̄2
G = −σ2

∫ 0

1

v2dv = σ2

(

v3

3

∣

∣

∣

∣

1

0

=
σ2

3
.

Thus σ̄G = σ√
3
.
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Chapter 26 (Lookback Options)

Notes on similarity reductions for lookback options

To motivate the similarity transformation we are going to make, we first note that we can
write the payoff for the lookback strike put as

max(M − S, 0) =M max

(

1− S

M
, 0

)

,

which is of the form of the variableM times another function (of the ratio S
M
). This motivates

us to look for a lookback options solution of the functional form

MαW

(

S

M

)

,

for some (yet to be determined) power α and function W . If we define ξ ≡ S
M

we can change
the Black-Scholes equation in V into an equation for W = W (ξ, t). To do this we need the
following derivatives. We have

∂V

∂t
=Mα∂W

∂t
∂V

∂S
=Mα∂W

∂ξ

∂ξ

∂S
=Mα ∂W

∂ξ

(

1

M

)

=Mα−1 ∂W

∂ξ

∂2V

∂S2
=

∂

∂S

(

Mα−1 ∂W

∂ξ

)

=Mα−1∂
2W

∂ξ2
· 1

M
=Mα−2 ∂

2W

∂ξ2
.

Then the Black-Scholes equation for V (using S =Mξ) becomes

Mα∂W

∂t
+

1

2
σ2M2ξ2

(

Mα−2∂
2W

∂ξ2

)

+ r(Mξ)Mα−1∂W

∂ξ
− rMαW = 0 .

If we divide this by Mα we get

∂W

∂t
+

1

2
σ2ξ2

∂2W

∂ξ2
+ rξ

∂W

∂ξ
− rW = 0 .

With our final condition that V (S,M, T ) =MαW (ξ, T ). The boundary condition of ∂V
∂M

= 0
on S =M becomes

∂V

∂M
=

∂

∂M
(MαW (ξ, t)) = αMα−1W (ξ, t) +Mα ∂W

∂ξ
· ∂ξ
∂M

.

Since
∂ξ

∂M
=

∂

∂M

(

S

M

)

= − S

M2
= − ξ

M
,

we get that
∂V

∂M
= αMα−1W −Mα−1ξ

∂W

∂ξ
,
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If we set this equal to zero and then divide by Mα−1 we get

ξ
∂W

∂ξ
− αW = 0 .

On S =M we have ξ = 1 and we get

∂W

∂ξ
− αW = 0 on ξ = 1 ,

the equation given in the book.
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Chapter 27 (Derivatives and Stochastic Control)

Notes on Passport Options

From the book we have that our portfolio has an evolution given by

dπ = r(π − qS)dt+ qdS .

If our stock had the standard dynamics dS = µSdt+ σSdX then we can write dπ as

dπ = r(π − qS)dt+ q(µSdt+ σSdX) = (r(π − qS) + qµS)dt+ qσSdX . (191)

This explicitly shows the coefficient of the dX term which is needed in taking derivatives
with respect to π using Ito’s Lemma. If we define our hedged portfolio in the normal way
as long one option and short some amount of stock as Π = V −∆S since V is a function of
S, π, and t we find that

dΠ =

(

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)

dt+
∂V

∂S
dS +

∂V

∂π
dπ +

1

2
q2S2σ2∂

2V

∂π2
dt+ (qSσ)(Sσ)

∂2V

∂π∂S
dt−∆dS

=

(

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ qσ2S2 ∂

2V

∂π∂S
+

1

2
q2S2σ2∂

2V

∂π2

)

dt+
∂V

∂S
dS +

∂V

∂π
dπ −∆dS

=

(

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ qσ2S2 ∂

2V

∂π∂S
+

1

2
q2S2σ2∂

2V

∂π2
+ r(π − qS)

∂V

∂π

)

dt

+
∂V

∂S
dS + q

∂V

∂π
dS −∆dS ,

where in the last equation we have used the fact that dπ = r(π− qS)dt+ qdS. To make the
coefficient of the random term dS equal to zero we must enforce

∂V

∂S
+ q

∂V

∂π
−∆ = 0 ,

or solving for ∆ that

∆ =
∂V

∂S
+ q

∂V

∂π
. (192)

Under this condition dΠ is deterministic and we set dΠ = rΠdt to find

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ qσ2S2 ∂

2V

∂π∂S
+

1

2
q2S2σ2∂

2V

∂π2
+ r(π − qS)

∂V

∂π
− rV + rS∆ = 0 ,

or since we know an expression for ∆ via Equation 192 we have

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ qσ2S2 ∂

2V

∂π∂S
+

1

2
q2S2σ2∂

2V

∂π2
+ rS

∂V

∂S
+ rπ

∂V

∂π
− rV = 0 . (193)

The final condition on our passport option is V (S, π, T ) = max(π, 0).

To more easily solve this equation, we seek a similarity solution of the form V (S, π, t) =
SH(ξ, t) with ξ = π

S
. To derive the differential equation forH(ξ, t) we need to take derivatives
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of the given functional form for V . We find

∂V

∂t
= S

∂H

∂t
∂V

∂S
= H + S

∂H

∂ξ

(

− π

S2

)

= H − ξ
∂H

∂ξ

∂2V

∂S2
=

∂

∂S

(

H − ξ
∂H

∂ξ

)

=
∂

∂ξ

(

H − ξ
∂H

∂ξ

)(

∂ξ

∂S

)

=

(

∂H

∂ξ
− ∂H

∂ξ
− ξ

∂2H

∂ξ2

)

(

− π

S2

)

=
ξ2

S

∂2H

∂ξ2

∂V

∂π
= S

∂H

∂ξ
· 1
S

=
∂H

∂ξ

∂2V

∂π2
=

∂

∂π

(

∂H

∂ξ

)

=
1

S

∂2H

∂ξ2

∂2V

∂S∂π
=

∂

∂S

(

∂H

∂ξ

)

=
∂

∂ξ

(

∂H

∂ξ

)

∂ξ

∂S
=
∂2H

∂ξ2

(

− π

S2

)

= − ξ

S

∂2H

∂ξ2
.

Using these derivatives in Equation 193 we find

S
∂H

∂t
+

1

2
σ2S2

(

ξ2

S

∂2H

∂ξ2

)

+ qσ2S2

(

− ξ

S2

∂2H

∂ξ2

)

+
1

2
q2S2σ2

(

1

S

∂2H

∂ξ2

)

+ rS

(

H − ξ
∂H

∂ξ

)

+ rπ

(

∂H

∂ξ

)

− rSH = 0 .

If we divide by S and simplify we get

∂H

∂t
+

(

1

2
σ2ξ2 − qσ2ξ +

1

2
q2σ2

)

∂2H

∂ξ2
= 0 .

or when we simplify the coefficient of ∂2H
∂ξ2

∂H

∂t
+

1

2
σ2(ξ − q)2

∂2H

∂ξ2
= 0 . (194)

The payoff transforms as follows

V (S, π, T ) = max(π, 0) = SH(ξ, T ) ,

when we divide by S we get
H(ξ, T ) = max(ξ, 0) ,

for the simplified similarity solution final condition.

We now write the optimal strategy in terms of H . We find

max
|q|≤1

(

qσ2S2 ∂
2V

∂S∂π
+

1

2
q2σ2S2∂

2V

∂π2

)

= max
|q|≤1

(

qσ2S2

(

− ξ

S

∂2H

∂ξ2

)

+
1

2
q2σ2S2

(

1

S

∂2H

∂ξ2

))

= max
|q|≤1

((

−qξ + 1

2
q2
)

∂2H

∂ξ2

)

= max
|q|≤1

((

1

2
(q2 − 2qξ + ξ2)− 1

2
ξ2
)

∂2H

∂ξ2

)

= max
|q|≤1

(

(q − ξ)2
∂2H

∂ξ2

)

,
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since 1
2
is just a scaling and ξ is a constant in the above maximization. If the sign of ∂2H

∂ξ2

is positive we can factor that expression out of the maximization above to find the optimal
strategy to be

q =

{

−1 when ξ > 0
+1 when ξ < 0

.

Assuming the optimal control q specified above we find the coefficient of ∂
2H
∂ξ2

in Equation 194
to be given by

(ξ − q)2 = (ξ + 1)2 when ξ > 0

(ξ − q)2 = (ξ − 1)2 = (−ξ + 1)2 when ξ < 0 .

In either case we can write the above as (|ξ|+ 1)2 for all ξ and we get

∂H

∂t
+

1

2
σ2(|ξ|+ 1)2

∂2H

∂ξ2
= 0 ,

the same as in the book.
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Chapter 28 (Miscellaneous Exotics)

Notes on Forward-Start Options

Following the book, we look for a similarity solution of the form V (S,S, t) = SH(ξ, t) with
ξ = S

S and S = S(T1) the asset price at the time T1. To derive the differential equation for
H(ξ, t) we need to take derivatives of the given functional form for V . We find

∂V

∂t
= S ∂H

∂t
∂V

∂S
= S

(

1

S
∂H

∂ξ

)

=
∂H

∂ξ

∂2V

∂S2
=

1

S
∂2H

∂ξ2

Using these derivatives in the Black-Scholes equation we get

S ∂H
∂t

+
1

2
σ2S2ξ2

(

1

S
∂2H

∂ξ2

)

+ r(Sξ)
(

∂H

∂ξ

)

− rSH = 0 .

If we divide by S and simplify we get

∂H

∂t
+

1

2
σ2ξ2

∂2H

∂ξ2
+ rξ

∂H

∂ξ
− rH = 0 .

The boundary conditions transform as follows

V (S,S, T ) = max(S − S, 0) = S max(ξ − 1, 0)SH(ξ, T ) .

Since the left-hand-side is equal to SH(ξ, T ) we get thatH(ξ, T ) = max(ξ−1, 0) in agreement
with the book.

Notes on the Volatility Option

With one state variable Si = S(ti−1) we can write the other state variable Ii as follows

Ii =

√

√

√

√

1

δt(i− 1)

i
∑

j=1

log

(

S(tj)

S(tj−1)

)2

=

√

√

√

√

1

δt(i− 1)

i−1
∑

j=1

log

(

S(tj)

S(tj−1)

)2

+
1

δt(i− 1)
log

(

S(ti)

S(ti−1)

)2

=

√

1

δt(i− 1)
I2i−1(δt(i− 2)) +

1

δt(i− 1)
log

(

S(ti)

S(ti−1)

)2

=

√

(

i− 2

i− 1

)

I2i−1 +
1

δt(i− 1)
log

(

S(ti)

Si

)2

,
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note the state Si value in the last term inside the square root above. In the continuous case
the definition of I is given by

I =

√

1

t

∫ t

0

σ(S, τ)dτ .

From this the differential of I or dI is given by

dI =
1

2

(

1

t

∫ t

0

σ(S, τ)dτ

)−1/2 [
σ(S, t)2

t
− 1

t2

∫ t

0

σ2(S, τ)dτ

]

dt

=
1

2I

(

σ(S, t)2

t
− I2

t

)

dt =

(

σ(S, t)2 − I2

2tI

)

dt .
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Chapter 30: One-Factor Interest Rate Models

Notes on the Text

Notes on the bond pricing equation for the general model

In this section we derive the bond pricing equation in the case when the bond pays a coupon
K(r, t). This is very similar to the equivalent derivation presented in the book. In the case
where our bond pays coupons we need to add a K(r, t) term to the dt increment of dV to
get

dV =

(

∂V

∂t
+K(r, t)

)

dt+
∂V

∂r
dr +

1

2
w2∂

2V

∂r2
dt . (195)

Using this expression for dV we consider the change in the mixed portfolio Π = V1−∆V2 as

dΠ =

(

∂V1
∂t

+K

)

dt +
∂V1
∂r

dr +
1

2
w2∂

2V1
∂r2

dt

− ∆

[(

∂V2
∂t

+K

)

dt+
∂V2
∂r

dr +
1

2
w2∂

2V2
∂r2

dt

]

.

Here we have explicitly assumed that K(r, t) is paid by both bonds. If we take ∆ given by

∆ =
∂V1
∂r
∂V2
∂r

,

and then the dr terms in dΠ vanish, and we get

dΠ =

[(

∂V1
∂t

+K

)

+
1

2
w2∂

2V1
∂r2

−∆

[(

∂V2
∂t

+K

)

+
1

2
w2∂

2V2
∂r2

]]

dt .

Which to avoid an arbitrage opportunity we set equal to

rΠdt = r(V1 −∆V2)dt .

Thus when we do this and place V1 on the left-hand-side and V2 on the right-hand-side

∂V1
∂t

+K +
1

2
w2∂

2V1
∂r2

− rV1 = ∆

[

∂V2
∂t

+K +
1

2
w2∂

2V2
∂r2

− rV2

]

.

Next we divide by ∂V1
∂r

on both sides to get

1
∂V1
∂r

(

∂V1
∂t

+K +
1

2
w2∂

2V1
∂r2

− rV1

)

=
1
∂V2
∂r

(

∂V2
∂t

+K +
1

2
w2∂

2V2
∂r2

− rV2

)

.

Setting each side equal to a(r, t) which we take equal to w(r, t)λ(r, t) − u(r, t) we see that
both V1 and V2 must satisfy

∂V

∂t
+K(r, t) +

1

2
w2∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0 , (196)

which is the desired equation.
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Notes on what is the market price of risk

The differential of our bond price V when V depends on a stochastic interest rate, r, such
that dr = w(r, t)dX + u(r, t)dt and a deterministic time variable, t, using Ito’s lemma to
leading order is given by

dV =
∂V

∂r
dr +

∂V

∂t
dt+

1

2
w2∂

2V

∂r2
dt

= w
∂V

∂r
dX +

(

∂V

∂t
+ u

∂V

∂r
+

1

2
w2∂

2V

∂r2

)

dt .

From the zero coupon bond pricing equation derived in the text we have that

∂V

∂t
+

1

2
w2∂

2V

∂r2
+ u

∂V

∂r
= λw

∂V

∂r
+ rV , (197)

from which when we put this into the coefficient of dt above we find that the value of dV
computed above becomes

dV = w
∂V

∂r
dX +

(

wλ
∂V

∂r
+ rV

)

dt .

Transforming this expression some we find

dV − rV dt = w
∂V

∂r
(dX + λdt) , (198)

which is the books equation 30.5.

Notes on tractable models and the solutions of the bond pricing equations

When our stochastic interest rate r satisfies

dr = w(r, t)dX + u(r, t)dt ,

with

w(r, t) =
√

α(t)r + β(t) (199)

u(r, t) = −γ(t)r + η(t) + λ(r, t)
√

α(t)r + β(t) , (200)

Then we make the vary simple verification that that u− λw in Equation 196 is independent
of λ(r, t) since

u− λw = −γr + η + λw − λw = −γr + η . (201)

independent of λ. Now lets consider solutions to Equation 196 of the following form

Z(r, t) = eA(t;T )−rB(t;T ) . (202)
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To put this form into Equation 196 we need the following derivatives

∂Z

∂t
=

(

∂A

∂t
− r

∂B

∂t

)

Z(t;T )

∂Z

∂r
= −B(t;T )Z(t;T )

∂2Z

∂r2
= B2(t;T )Z(t;T ) .

When we put this into Equation 196 and divide by Z we get

∂A

∂t
− r

∂B

∂t
+

1

2
w2B2 − (u− λw)B − r = 0 . (203)

which is the books equation 30.9. If we take ∂
∂r

of this expression we find

−∂B
∂t

+
1

2
B2∂(w

2)

∂r
−B

∂(u − λw)

∂r
− 1 = 0 .

Taking another derivative with respect to r we get

1

2
B2∂

2(w2)

∂r2
−B

∂2

∂r2
(u− λw) = 0 .

When we divide this by B we get

1

2
B
∂2(w2)

∂r2
− ∂2

∂r2
(u− λw) = 0 .

Since B is a function of T and u− λw is not a function of T by changing the value of T the
left-hand-side of the above would change values unless

∂2(w2)

∂r2
= 0 . (204)

In this case we would then also have

∂2(u− λw)

∂r2
= 0 . (205)

Thus these last to expressions show that w and u−λw must have the functional forms given
by Equations 199 and 200.

From Equation 201 we find that u− λw = η − rγ by using this and putting Equations 199
and 200 into Equation 203 we get

∂A

∂t
− r

∂B

∂t
+

1

2
(αr + β)B2 − (−γr + η)B − r = 0 .

Equating power of r on the left-hand-side to the zero on the right-hand-side gives

∂A

∂t
+

1

2
β(t)B2 − η(t)B = 0 for O(r0) (206)

∂B

∂t
− 1

2
α(t)B2 − γ(t)B + 1 = 0 for O(r1) , (207)
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both of which match the equations given in the book. Note that we have explicitly used
function notation for α, β, γ, and η to emphasize the fact that that in general these expres-
sions can be functions of t. The final condition for Z(t;T ) when t = T is that Z(t, T ) = 1
or

eA(T ;T )−rB(T ;T ) = 1 ,

or again equating powers of r gives

A(T ;T ) = B(T ;T ) = 0 .

The bond pricing equation with constant parameters

In this subsection of these notes we derive the analytic expressions for A(t;T ) and B(t;T )
found in the expression Z(r, t;T ) = eA(t;T )−rB(t;T ) for the pricing of a zero coupon bond when
the parameters in the dynamics of the stochastic interest rate r

dr = (η − γr)dt+
√

αr + βdX , (208)

namely α, β, γ, and η are are constant. There is a lot of algebra in the notes that follow, but
having all of the computations in one place can make the verification of the results easier. If
desired this section can be skipped on first reading. From the discussion in the the book for
the differential equation for B we have

dB

dt
=

1

2
αB2 + γB − 1 =

1

2
α

(

B2 +
2γ

α
B − 2

α

)

. (209)

To begin to integrate this equation lets find the two roots, r1,2, of the quadratic in B on the
right-hand-side of the above. Using the quadratic equation we find

r1,2 =
−2γ

α
±
√

4γ2

α2 + 4
(

2
α

)

2
= −γ

α
±
√

γ2

α2
+

2

α
=

−γ ±
√

γ2 + 2α

α
.

Thus we see that

B2 +
2γ

α
B − 2

α
= (B − r1)(B − r2)

=

(

B +
γ −

√

γ2 + 2α

α

)(

B +
γ +

√

γ2 + 2α

α

)

.

If we now introduce a and b so that a =
−γ+

√
γ2+2α

α
and b =

γ+
√
γ2+2α

α
, we can write the

above as (B − a)(B + b). Before continuing from the definitions of a and b above we have
the following simple relationships (which will be used later) for expressions involving a and
b

ab =
2

α
(210)

−a + b =
2γ

α
(211)

a + b =
2
√

γ2 + 2a

α
=

2ψ1

α
, (212)
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where we have defined ψ1 as ψ1 =
√

γ2 + 2α. Back to the main development, using the
above quadratic factorization we have the differential equation we want to solve written as

dB

dt
=

1

2
α(B − a)(B + b) ,

or
dB

(B − a)(B + b)
=

1

2
αdt .

Integrating both sides from T (where B(T ;T ) = 0) to t (where B = B(t;T )) we have

∫ B(t;T )

0

dB′

(B′ − a)(B′ + b)
=

1

2
α

∫ t

T

dt =
1

2
α(t− T ) .

To evaluate the left-hand-side of this expression we performing a partial fraction decompo-
sition of the given fraction. We find

1

(B′ − a)(B′ + b)
=

1

a + b

(

1

B′ − a

)

− 1

a+ b

(

1

B′ + b

)

.

Using this we can evaluate the integral over B′ to get
∫ B(t;T )

0

dB′

(B′ − a)(B′ + b)
=

1

a+ b
ln

(

B − a

−a

)

− 1

a+ b
ln

(

B + b

b

)

=
1

a+ b
ln

(

b(a− B)

a(B + b)

)

.

Setting this equal to 1
2
α(t− T ) we have

ln

(

b(a− B)

a(B + b)

)

=
a + b

2
α(t− T ) .

Using Equation 212 we see that
(

a+b
2

)

α = ψ1. Thus we have

ln

(

B + b

a− B

)

= ψ1(T − t) + ln

(

b

a

)

,

or
B + b

a− B
=
b

a
eψ1(T−t) ,

or

B + b =

(

b

a

)

eψ1(T−t)(a− B) = beψ1(T−t) − b

a
eψ1(T−t)B ,

or finally solving for B we get

B =
b(eψ1(T−t) − 1)
(

b
a
eψ1(T−t) + 1

) =
eψ1(T−t) − 1

1
a
(eψ1(T−t) − 1) + 1

a
+ 1

b

.

To simplify this further first consider

1

a
=

α

−γ +
√

γ2 + 2α

(

−γ −
√

γ2 + 2α

−γ −
√

γ2 + 2α

)

=
α(−γ −

√

γ2 + 2α)

γ2 − (γ2 + 2α)
=
γ +

√

γ2 + 2α

2
=
γ + ψ1

2
=
bα

2
, (213)
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and second from Equations 210 and 212 that

1

a
+

1

b
=
a+ b

ab
=

2ψ1

α

(α

2

)

= ψ1 .

Thus using these two expressions we get

B(t;T ) =
2(eψ1(T−t) − 1)

(γ + ψ1)(eψ1(T−t) − 1) + 2ψ1

, (214)

the expression in the book for B(t;T ). To find the solution for A(t;T ) we using the time
differential equation for A and B to derive

dA

dB
=

ηB − 1
2
βB2

1
2
αB2 + γB − 1

= −β
α

(

B2 − 2η
β
B

B2 + 2γ
α
B − 2

α

)

(215)

= −β
α

(

B2 + 2γ
α
B − 2

α
− 2γ

α
B + 2

α
− 2η

β
B

B2 + 2γ
α
B − 2

α

)

= −β
α



1−
2
(

γ
α
+ η

β

)

B − 2
α

B2 + 2γ
α
B − 2

α



 .

In the above we have added and subtracted the same quantity in the numerator so that we
have a proper rational function of B. We next factor the denominator in the fraction above
as we have done earlier, to get

dA

dB
= −β

α



1−
2
(

γ
α
+ η

β

)

B − 2
α

(B − a)(B + b)



 .

To integrate the right-hand-side of this expression we will need to apply partial fractions to
the fraction that remains. That is we seek coefficients A and B such that

2
(

γ
α
+ η

β

)

B − 2
α

(B − a)(B + b)
= A

(

1

B − a

)

+ B
(

1

B + b

)

.

To find A, multiply both sides of the above by B − a and let B = a to get

A =
1

a+ b

(

2

(

γ

α
+
η

β

)

a− 2

α

)

=
2

a + b

((

γ

α
+
η

β

)

a− 1

α

)

.

To find B multiply both sides by B + b and let B = −b to get

B =
1

−(a + b)

(

2

(

γ

α
+
η

β

)

(−b)− 2

α

)

=
2

a+ b

((

γ

α
+
η

β

)

b+
1

α

)

.

Thus we have shown that

dA

dB
= −β

α

(

1− A
B − a

− B
B + b

)

,
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which we can integrate from T to t (since A(T ;T ) = 0) we get

A = −β
α
B +

β

α
A ln

(

B − a

−a

)

+
β

α
B ln

(

B + b

b

)

.

We have almost shown the result in the book. To fully derive that result consider the
following manipulations of the coefficient of ln

(

a−B
a

)

.

β

α
A =

2β

(a + b)α

((

γ

α
+
η

β

)

a− 1

α

)

=
2

α

a

(a+ b)

(

η − β

α

(

1

a
− γ

))

=
2

α

a

(a+ b)

(

η − aβ

2

[(

2

aα

)(

1

a
− γ

)])

.

Consider now the expression 2
aα

(

1
a
− γ
)

. Using Equation 213 we can write 1
a
as γ+ψ1

2
to get

2

aα

(

1

a
− γ

)

=
2

aα

(−γ + ψ1

2

)

=
−γ + ψ1

aα
.

Since a = γ+ψ1

2
the above expression evaluates to 1. Thus we have shown that

β

α
A =

2

α

(

a

a+ b

)(

η − aβ

2

)

=
2

α
aψ2 ,

where we have defined ψ2 as

ψ2 =
η − aβ/2

a+ b
. (216)

Next we consider the coefficient of ln
(

b+B
b

)

given by

β

α
B =

2β

(a + b)α

((

γ

α
+
η

β

)

b+
1

α

)

=
2

α
b

β

a + b

(

γ

α
+
η

β
+

1

bα

)

.

Introduce ψ2 into this last expression by solving Equation 216 for η to get that

η

β
=
a+ b

β
ψ2 +

a

2
.

Thus we get that

β

α
B =

2

α
b

β

a + b

(

γ

α
+
a+ b

β
ψ2 +

a

2
+

1

bα

)

=
2

α
b

(

ψ2 +
β

a + b

(

γ

α
+
a

2
+

1

bα

))

.

Next we use Equation 213 we can obtain that 1
b
= αa

2
, and thus 1

bα
= a

2
, and

a

2
+

1

bα
= a .

After this we now have
β

α
B =

2

α
b

(

ψ2 +
β

a+ b

(γ

α
+ a
)

)

.

96



We find that the inner most expression is given by

γ

α
+ a =

γ

α
+

−γ + ψ1

α
=
ψ1

α
,

and

a + b =
2ψ1

α
,

so that
1

a+ b

(γ

a
+ a
)

=
α

2ψ1

ψ1

α
=

1

2
.

Thus we have shown that
β

α
B =

2

α
b

(

ψ2 +
β

2

)

.

Combining many of these previous results we finally get the desired expression for A(t;T )
in terms of B = B(t;T )

A(t;T ) = −β
α
B +

2

α
a ln

(

a− B

a

)

+
2

α
b

(

ψ2 +
β

2

)

ln

(

b+B

b

)

, (217)

which is the books equation 30.15.

We now seek to determine the long time to maturity asymptotics of the yield curve. From
the definition of the yield curve

Y =
−A(t;T ) + rB(t;T )

T − t
=

−A(τ)
τ

+
rB(τ)

τ
.

When τ → ∞ by using Equation 214 we get B → 2
γ+Ψ1

and so the second term rB(τ)
τ

→ 0 in
this limit. From the differential equation for A

dA

dt
= ηB − 1

2
βB2 ,

when we consider large τ from the known limit of B as τ → ∞ the right-hand-side of the
above expression has the limit

ηB − 1

2
βB2 → η

(

2

γ + ψ1

)

− 1

2
β

(

4

(γ + ψ1)2

)

=
2

(γ + ψ1)2
(η(γ + ψ1)− β) ,

which is independent of t. Thus integrating
∫ t

T
on both sides of the differential equation for

A gives

A(t;T ) =
2

(γ + ψ1)2
(η(γ + ψ1)− β) (t− T ) ,

which when we negate and divide by T − t = τ is the asymptotic expression presented in
the book.

Recall from Chapter 10 on Page 40 that for a stochastic process that has dynamics given by

dy = A(y, t)dt+B(y, t)dX ,
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The Fokker-Planck or forward Kolmogorov equation is

∂P

∂t′
=

1

2

∂2

∂y′2
(B(y′, t′)2P )− ∂

∂y′
(A(y′, t′)P ) (218)

which for the spot rate r dynamics considered in this chapter of

dr = (u− λw)dt+ wdX ,

means that we take A(r, t) = u(r, t)− λ(r, t)w(r, t) and B(r, t) = w(r, t) to get the Fokker-
Planck equation of

∂P

∂t
=

1

2

∂2

∂r2
(w2P )− ∂

∂r
((u− λw)P ) . (219)

In steady-state ∂P
∂t

→ 0 and our notation changes to P = P∞ to give

1

2

d2

dr2
(w2P∞) =

d

dr
((u− λw)P∞) .

Under the constant parameter model from Equation 208 this becomes

1

2

d2

dr2
((αr + β)P∞) =

d

dr
((η − γr)P∞) .

Multiplying by two and integrating both sides of the above we get

d

dr
((αr + β)P∞) = 2(η − γr)P∞ + C1 ,

for some constant C1. Using the product rule to take the derivative of the expression on the
left-hand-side gives

αP∞ + (αr + β)
dP∞
dr

= 2(η − γr)P∞ + C1 ,

or

(αr + β)
dP∞
dr

+ (α− 2η + 2γr)P∞ = C1 ,

or on dividing both sides by αr + β gives

dP∞
dr

+
α− 2η + 2γr

αr + β
P∞ =

C1

αr + β
. (220)

This is a non-homogeneous differential equation for P∞ and the total solution is given by the
sum of a homogeneous solution and a particular solution. We first solve the homogeneous
problem where we take the right-hand-side equal to zero. Writing this expression as

dP∞
P∞

=

(

2η − 2γr − α

αr + β

)

dr

= −2γ

α

(

r + α
2γ

− η
γ

r + β
α

)

dr = −2γ

α

(

r + β
α
− β

α
+ α

2γ
− η

γ

r + β
α

)

dr

= −2γ

α

(

1−
(

β

α
− α

2γ
+
η

γ

)(

r +
β

α

)−1
)

dr .
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We can integrate both sides to get

ln(|p∞|) = −2γ

α

(

r −
(

β

α
− α

2γ
+
η

γ

)

ln

(

r +
β

α

))

+ C2 ,

for some constant C2. On solving for p∞(r) we have

p∞(r) = eC2e−
2γ
α
r exp

{

2γ

α

(

β

α
− α

2γ
+
η

γ

)

ln

(

r +
β

α

)}

Note that the coefficient of the logarithm in the exponential can be written

2γ

α

(

β

α
− α

2γ
+
η

γ

)

=
2γβ

α2
− 1 +

2η

α
.

Motivated by the expression above, define k to be

k =
2η

α
+

2βγ

α2
. (221)

Then we get for p∞(r)

p∞(r) = eC2e−
2γ
α
r

(

r +
β

α

)k−1

= eC2e−
2γ
α (r+

β
α)e

2γ
α (

β
α)
(

r +
β

α

)k−1

= D

(

r +
β

α

)k−1

e−
2γ
α (r+

β
α) ,

for some new constant D. Having found the homogeneous solution we next need to go and
find the inhomogeneous solution. In general to do that one would introduce an unknown

function v(r) and put v(r)
(

r + β
α

)k−1
e−

2γ
α (r+

β
α) into the differential Equation 220 to derive

an equation for v(r). When one does that one gets

dv

dr
=
C1

α

(

r +
β

α

)−k+2

e
2γ
α (r+

β
α) .

If we don’t take C1 = 0 then this solution will have an exponentially growing component
as r → ∞. Thus we take C1 = 0. To finish this formulation we must have the integral of
p∞(r) evaluate to 1 or

I =

∫ ∞

−β/α
D

(

r +
β

α

)k−1

e−
2γ
α (r+

β
α)dr = 1 .

To evaluate this let u = r + β
α
then this integral becomes

D

∫ ∞

0

uk−1e−
2γ
α
udu .

Let v = 2γ
α
u and dv = 2γ

α
du and the above becomes

I = D

∫ ∞

0

(

α

2γ

)k−1

vk−1e−vdv

(

α

2γ

)

= D

(

α

2γ

)k ∫ ∞

0

vk−1evdv = D

(

α

2γ

)k

Γ(k) = 1 .
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So solving for D we thus have

D =

(

2γ

α

)k
1

Γ(k)
.

Thus with this explicit value of D we have our final expression for p∞(r) of

p∞(r) =

(

2γ

α

)k
1

Γ(k)

(

r +
β

α

)k−1

e−
2γ
α (r+

β
α) for r ≥ −β

α
. (222)

The mean of this distribution can now be computed
∫ ∞

−β/α
rp∞(r)dr =

∫ ∞

−β/α

(

r +
β

α

)

p∞(r)dr − β

α

∫ ∞

−β/α
p∞(r)dr .

Now by normalization the second term above is given by −β
α
, while the first term is given

by

1

Γ(k)

(

2γ

α

)k ∫ ∞

−β/α

(

r +
β

α

)k

e−
2γ
α (r+

β
α)dr =

1

Γ(k)

(

2γ

α

)k ∫ ∞

0

vke−
2γ
α
vdv

=
1

Γ(k)

(

2γ

α

)k (
α

2γ

)k+1 ∫ ∞

0

uke−udu

=
1

Γ(k)

(

α

2γ

)

Γ(k + 1) =
αk

2r
.

Combining with −β
α
we have a mean of

αk

2r
− β

α
,

as claimed in the text.

Notes on named models: Vasicek

We are told that the Vasicek model is a special case of Equation 208 with α = 0 and β > 0.
In that case the stochastic interest rate r satisfies

dr = (η − γr)dt+ β1/2dX . (223)

The solution for the pricing of the general zero-coupon bond is still given by eA(t;T )−rB(t;T )

with A and B modified since we are now considering the case α = 0. To derive the ex-
pressions for A(t;T ) and B(t;T ) in this case we could simplify the general solutions found
in Equations 214 and 217 by taking the limit as α → 0. For the function B(t;T ) given by
Equation 214 this seems to be a tractable approach since the limits of ψ1 as α→ 0 is simply
γ and we get

B(t;T ) =
2(eγ(T−t) − 1)

2γ(eγ(T−t) − 1) + 2γ
=

1

γ
(1− e−γ(T−t)) , (224)

the same as in the book. For A(t;T ), however, there seem to be a great number of indeter-
minate limits that need to be simplify to compute the expression for A when α = 0, and
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thus it is preferable to go back to the original derivation of A starting with the assumption
that α = 0. Starting with Equation 215 in that case we get

dA

dB
=
ηB − 1

2
βB2

γB − 1
= −1

2

β

γ

(

B2 − 2η
β
B

B − 1
γ

)

.

Performing long division on this fraction of B shows that we can write

B2 − 2η
β
B

B − 1
γ

= B +

(

1

γ
− 2η

β

)

+

1
γ

(

1
γ
− 2η

β

)

B − 1
γ

,

which is more easily integrated as a function of B. Thus we have shown that

dA

dB
= −1

2

β

γ

(

B +

(

1

γ
− 2η

β

)

+
1

γ

(

1

γ
− 2η

β

)

1

B − 1
γ

)

,

Integrating this expression from T to t and using the fact that A(T ;T ) = B(T ;T ) = 0 gives

A(t;T ) = −1

2

β

γ

(

B2

2
+

(

1

γ
− 2η

β

)

B +
1

γ

(

1

γ
− 2η

β

)

ln

(

B − 1
γ

− 1
γ

))

= − β

4γ
B2 − 1

2

β

γ

(

1

γ
− 2η

β

)

B − β

2γ2

(

1

γ
− 2η

β

)

ln (1− γB)

= − β

4γ
B2 +

1

γ2

(

−β
2
+ γη

)

B +
1

γ3

(

−β
2
+ γη

)

ln
(

e−γ(T−t)
)

= − β

4γ
B2 +

(

γη − β

2

)[

1

γ2
B +

1

γ3
(−γ)(T − t)

]

= − β

4γ
B2 +

1

γ2
(B − T + t)

(

γη − β

2

)

, (225)

which is the expression in the book. To determine the probability density for r we could
again take the limit α → 0 of the general expression Equation 222 but this again involves
several indeterminate limits and proceeding that way is more difficult than simply deriving
the expression for p∞(r) starting from the assumption that α = 0. In that case the steady-
state Fokker-Planck Equation 219 becomes

d2

dr2
(βP∞) = 2

d

dr
((η − γr)P∞) .

Integrating both sides gives

β
dP∞
dr

= 2(η − γr)P∞ + C1 ,

for some constant C1. Thus we have

dP∞
dr

− 2

β
(η − γr)P∞ =

C1

β
.
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If we solve the homogeneous part of this equation first we need to consider

dP∞
P∞

=
2

β
(η − γr)dr ,

or integrating both sides gives

ln(P∞) =
2

β
ηr − γ

β
r2 + C2 .

On solving for P∞ we find

P∞ = eC2 exp

{

−γ
β

(

r2 − 2η

γ
r

)}

= C2 exp

{

−γ
β

(

r2 − 2η

γ
r +

η2

γ2
− η2

γ2

)}

= C2 exp

{

−γ
β

(

r − η

γ

)2

+
η2

βγ

}

= D exp

{

−γ
β

(

r − η

γ

)2
}

.

Note that in the Vasicek model since β > 0 and α → 0 our lower limit of r becomes in this
case −β

α
→ −∞. This logic is used in the to make this expression a valid density since we

must require that P∞ integrate to one. This requires that D must satisfy
∫ ∞

−∞
De−

γ
β (r−

η
γ )

2

dr = D

∫ ∞

−∞
e−

γ
β
r2dr = 2D

∫ ∞

0

e−
γ
β
r2dr

= 2D

√

β

γ

∫ ∞

0

e−v
2

dv = 2D

√

β

γ

√
π

2
= D

√

βπ

γ
= 1 ,

or

D =

√

γ

βπ
.

Thus our density is given by

P∞(r) =

√

γ

βπ
e−

γ
β (r−

η
γ )

2

, (226)

as claimed in the book. This density has a mean that can be easily calculated as
∫ ∞

−∞
rP∞(r)dr =

∫ ∞

−∞

(

r − η

γ

)

P∞(r)dr +
η

γ

∫ ∞

−∞
P∞(r)dr .

Since P∞ is a normalized probability density this second integral is η
γ
. The first integral

becomes
√

γ

βπ

∫ ∞

−∞

(

r − η

γ

)

e−
γ
β (r−

η
γ )

2

dr = 0 ,

by symmetry. Thus the mean of this distribution is η
γ
as claimed in the book.

Notes on named models: Cox, Ingersoll, and Ross

This model takes β = 0, which from Equation 208 gives

dr = (η − γr)dt+
√
αrdX ,
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for the differential equation satisfied by r. The value of a zero-coupon bond is still given
by eA(t;T )−rB(t;T ) where A and B are given by Equations 214 and 217 with β = 0, in all the
dependent relationships. The expression for the steady-state probability density P∞(r) is
given by Equation 222 again with β = 0. In that case we have k = 2η

α
so that

P∞(r) =

(

2γ

α

)k
1

Γ(k)
rk−1e−

2γ
α
r for r ≥ 0 .

The mean value for of this steady-state probability density is

αk

2γ
=

α

2γ

2η

α
=
η

γ
,

in agreement with the book.

Notes on named models: Ho & Lee

The Ho & Lee model has α = γ = 0, β > 0 and η a function of time i.e. η = η(t), so from
Equation 208 we have

dr = η(t)dt+
√

βdX , (227)

as the differential equation for the spot rate r. In this book, it is also common to see the
constant c defined as c =

√
β. Using Equation 201, with the parameters specified above

(namely γ = 0) the zero-coupon bond pricing Equation 196 under the Ho & Lee model takes
the form

∂Z

∂t
+

1

2
c2
∂2Z

∂r2
+ η(t)

∂Z

∂r
− rZ = 0 . (228)

When we consider a solution of this equation of the form Z(t;T ) = eA(t;T )−rB(t;T ), in Equa-
tion 209 we see that B(t;T ) satisfies dB

dt
= −1, which when we integrate from T to t with

B(T ;T ) = 0 gives
B(t;T ) = T − t . (229)

Then from Equation 206 for A(t;T ) we have

dA

dt
= η(t)B − 1

2
βB2 = η(t)(T − t)− β

2
(T − t)2 .

Integrating this from T to t gives

A(t;T ) =

∫ t

T

η(s)(T − s)ds− 1

2
β

∫ t

T

(T − s)2ds

=
β

6
(T − t)3 −

∫ T

t

η(s)(T − s)ds . (230)

Thus combining these two parts the full solution for, Z(t;T ), is then given by

Z(t;T ) = exp

{

1

6
c2(T − t)3 −

∫ T

t

η(s)(T − s)ds− (T − t)r

}

. (231)
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Notes on Equity and FX Forwards and Futures: Forwards

Consider a portfolio, Π, consisting of one forward contract, of value V (S, r, t), short ∆
underlying shares of stock, and short ∆1 risk-free bonds or

Π = V (S, r, t)−∆S −∆1Z ,

Ito’s lemma for the two stochastic parameters r and S on Π gives

dΠ =
∂V

∂t
dt+

∂V

∂S
dS +

∂V

∂r
dr

+
1

2

(

σ2S2∂
2V

∂S2
+ 2ρσSw

∂V

∂S∂r
+ w2∂

2V

∂r2

)

dt

− ∆dS −∆1

(

∂Z

∂t
dt+

∂Z

∂r
dr +

1

2
w2∂

2Z

∂r2
dt

)

.

Group everything by the differentials dt, dS, and dr to get

dΠ =

[

∂V

∂t
+

1

2

(

σ2S2∂
2V

∂S2
+ 2ρσSw

∂V

∂S∂r
+ w2∂

2V

∂r2

)

− ∆1

(

∂Z

∂t
+
w2

2

∂2Z

∂r2

)]

dt+

[

∂V

∂S
−∆

]

dS +

[

∂V

∂r
−∆1

∂Z

∂r

]

dr .

We now pick ∆ and ∆1 such that the above portfolio is deterministic. The coefficient of dr
will be equal to zero if we take

∆1 =
∂V
∂r
∂Z
∂r

.

The coefficient of dS will be zero if we take

∆ =
∂V

∂S
.

Then setting dΠ = rΠdt and dividing by dt we get

∂V

∂t
+

1

2

(

σ2S2∂
2V

∂S2
+ 2ρσSw

∂V

∂S∂r
+ w2∂

2V

∂r2

)

−∆1

[

∂Z

∂t
+
w2

2

∂2Z

∂r2

]

= rV − r∆S − r∆1Z = rV − rS
∂V

∂S
− r∆1Z .

Putting terms that depend on V on one side and terms that depend on Z on another to get

∂V

∂t
+

1

2

(

σ2S2∂
2V

∂S2
+ 2ρσSw

∂V

∂S∂r
+ w2∂

2V

∂r2

)

− rV + rS
∂V

∂S

= ∆1

[

∂Z

∂t
+
w2

2

∂2Z

∂r2
− rZ

]

,

or dividing by the numerator of ∆1 or ∂V
∂r

we get

1
∂V
∂r

(

∂V

∂t
+

1

2

(

σ2S2∂
2V

∂S2
+ 2ρσSw

∂V

∂S∂r
+ w2∂

2V

∂r2

)

− rV + rS
∂V

∂S

)

=
1
∂Z
∂r

(

∂Z

∂t
+
w2

2

∂2Z

∂r2
− rZ

)

,
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Since Z satisfies Equation 196 with K(r, t) = 0, the right-hand-side of the above is equal to
−(u(r, t))− w(r, t)λ(r, t)). When we make this substitution and multiply both sides by ∂V

∂r

the equation for V becomes the following

∂V

∂t
+

1

2

(

σ2S2∂
2V

∂S2
+ 2ρσSw

∂V

∂S∂r
+ w2∂

2V

∂r2

)

− rV + rS
∂V

∂S
+ (u− λw)

∂V

∂r
= 0 , (232)

or the equation in the book. The final condition on our forward contract is V (S, r, T ) = S−S̄.
The book then assert that a solution to this equation the the given boundary condition is
given by V (S, r, t) = S − S̄Z. To show that this true we can take the required derivatives
and see if they satisfy Equation 232. The derivatives of this proposed solution are given by

∂V

∂t
= −S̄ ∂Z

∂t
∂V

∂S
= 1

∂2V

∂S2
= 0

∂V

∂r
= −S̄ ∂Z

∂r
∂2V

∂r∂S
= 0

∂2V

∂r2
= −S̄ ∂

2Z

∂r2
.

Thus using these for the left-hand-side of Equation 232 we get

− S̄
∂Z

∂t
+ 0 + 0 +

1

2
w2(−S̄)∂

2Z

∂r2
+ rS + (u− λw)

(

−S̄ ∂Z
∂r

)

− r(S − S̄Z)

= −S̄
[

∂Z

∂t
+

1

2
w2∂

2Z

∂r2
+ (u− λw)

∂Z

∂r
− rZ

]

Since Z satisfies Equation 196 this final expression is zero.

Notes on Equity and FX Forwards and Futures: Futures

The partial differential equation satisfied by the futures price F (S, r, t) is

∂F

∂t
+

1

2

(

σ2S2∂
2F

∂S2
+ 2ρσSw

∂F

∂S∂r
+ w2∂

2F

∂r2

)

+ rS
∂F

∂S
+ (u− λw)

∂F

∂r
= 0 , (233)

note that there is no −rF term as there is in the forwards Equation 232. The reason that
there is no −rF term in the above expression is that when we equate dΠ equal to rΠdt our
portfolio initially has a value of −∆S −∆1Z since a futures contract has no value initially.
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Motivated by the quoted forward price of S
Z
we will consider an expression for the futures

price of the form F (S, r, t) = S
p(r,t)

. Then the equation that p(r, t) satisfies is given by putting
this expression into Equation 232 then the needed derivatives of F in terms of those of p
become

∂F

∂t
= − S

p2
∂p

∂t
∂F

∂S
=

1

p

∂2F

∂S2
= 0

∂F

∂r
= − S

p2
∂p

∂r

∂2F

∂r∂S
= − S

p2
∂p

∂r

∂2F

∂r2
=

2S

p3

(

∂p

∂r

)2

− S

p2
∂2p

∂r2
.

Then using these derivatives we find that the differential equation for p(r, t) given by

− S

p2
∂p

∂t
− ρσSw

p2
∂p

∂r
+

1

2
w2

(

2S

p3

(

∂p

∂r

)2

− S

p2
∂2p

∂r2

)

+
rS

p
+ (u− λw)

(

− S

p2
∂p

∂r

)

= 0 .

Multiply by −p2

S
and changing the order of some terms we get

∂p

∂t
+

1

2
w2∂

2p

∂r2
+ (u− λw)

∂p

∂r
− rp

w2

p

(

∂p

∂r

)2

+ ρσw
∂p

∂r
= 0 , (234)

which is the same equation as in the book. The final condition on F of F (S, r, T ) = S = S
p(r,T )

means that the final condition on p is p(r, T ) = 1.
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Chapter 31: Yield Curve Fitting

Notes on the Text

Notes on Ho & Lee

In the Ho & Lee model the risk-neutral spot rate has the process

dr = η(t)dt+ cdX ,

where the theoretical model price for zero-coupon bonds then is given by Z(r, t;T ) =
eA(t;T )−r(T−t), where

A(t;T ) = −
∫ T

t

η(s)(T − s)ds+
1

6
c2(T − t)3 .

On today t = t∗ we can pick the functional form of η(t) to match the market prices of traded
zero coupon bonds that mature at time T denoted by ZM(t∗;T ). Under the Ho & Lee model
this means that

ZM(t∗;T ) = eA(t
∗;T )−r∗(T−t∗) .

Using the expression above for A(t;T ) this means we need η∗(t) to satisfy

∫ T

t∗
η∗(s)(T − s)ds = − log(ZM(t∗;T ))− r∗(T − t∗) +

1

6
c2(T − t∗)3 . (235)

We can extract η∗(·) from this expression by taking T derivatives. The first T derivative of
this expression gives

η∗(T )(0) +

∫ T

t∗
η∗(s)ds = − ∂

∂T
log(ZM(t∗;T ))− r∗ +

1

2
c2(T − t∗)2 .

Note the first term is zero due to evaluating T − s at s = T . Another T derivative of this
expression gives

η∗(T ) = − ∂2

∂T 2
log(ZM(t∗;T )) + c2(T − t∗) .

When we use this expression for the functional form for η∗(t) we get for A(t;T )

A(t;T ) = −
∫ T

t

c2(s− t∗)(T − s)ds+

∫ T

t

∂2

∂s2
log(ZM(t∗; s))(T − s)ds+

1

6
c2(T − t)3 .
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To evaluate the first term in the expression for A(t;T ) we write it (without the c2) as

−
∫ T

t

(s− t∗)(T − s)ds =

∫ T

t

(−s+ t∗)(T − s)ds

=

∫ T

t

(T − s+ t∗ − T )(T − s)ds

=

∫ T

t

(T − s)2ds− (T − t∗)

∫ T

t

(T − s)ds

= −1

3
(T − s)3

∣

∣

T

t
+

1

2
(T − t∗)(T − s)2

∣

∣

T

t

=
1

3
(T − t)3 − 1

2
(T − t∗)(T − t)2 .

Combining this expression (with the c2 factor) with the last term, 1
6
c2(T − t)3, in the expres-

sion for A(t;T ) we find

c2

3
(T − t)3 − c2

2
(T − t∗)(T − t)2 +

1

6
c2(T − t)3 = −1

2
c2(t− t∗)(T − t)2 .

To evaluate the integral of the derivative or the second term in the expression for A(t;T ) we
will use integration by parts. We find

∫ T

t

∂2

∂s2
log(ZM(t∗; s))(T − s)ds = (T − s)

∂

∂s
log(ZM(t∗; s))

∣

∣

∣

∣

T

t

+

∫ T

t

∂

∂s
log(ZM(t∗; s))ds

= −(T − t)
∂

∂t
log(ZM(t∗; t)) + log

(

ZM(t∗;T )

ZM(t∗, t)

)

.

Thus for A(t;T ) combining all of these expressions we get

A(t;T ) = log

(

ZM(t∗;T )

ZM(t∗; t)

)

− (T − t)
∂

∂t
log(ZM(t∗; t))

− 1

2
c2(t− t∗)(T − t)2 . (236)

Notes on the extended Vasicek model of Hull and White

The Hull & White extended Vasicek model has the following differential equation for the
short rate

dr = (η(t)− γr)dt+ cdX ,

this expression matches the more general differential equation for r of

dr = (η(t)− γ(t)r)dt+
√

α(t)r + β(t)dX ,
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if we take α(t) ≡ 0, the values of γ, and β constant and the value for c = β1/2. Then the
general equation for B is given by Equation 207 but since we are taking α = 0 and the value
of γ independent of time or in this specific case by

∂B

∂t
= γB − 1 with B(T ;T ) = 0 .

This is integrated to give the solution

B(t;T ) =
1

γ
(1− e−γ(T−t)) . (237)

Using Equation 206 we find A(t;T ) is given by

∂A

∂t
= η(t)B − c2

2
B2 ,

since c2 = β. Integrating this from T to t since A(T ;T ) is zero we get

A(t;T ) = −
∫ T

t

η(s)B(s;T )ds− c2

2

∫ t

T

B(s;T )2dt .

Since for this model we know B(t;T ) from Equation 237 we have

B(s;T )2 =
1

γ2
(1− 2e−γ(T−s) + e−2γ(T−s)) ,

This second integral is therefore proportional to

∫ t

T

B(s;T )2ds =
1

γ2

[

(t− T )− 2

γ
e−γ(T−s)

∣

∣

t

T
+

1

2γ
e−2γ(T−s)∣

∣

t

T

]

=
1

γ2

[

−(T − t)− 2

γ
(e−γ(T−t) − 1) +

1

2γ
(e−2γ(T−t) − 1)

]

=
1

γ2

[

−(T − t)− 2

γ
e−γ(T−t) +

1

2γ
e−2γ(T−t) +

3

2γ

]

.

Thus at this point for A(t;T ) we have

A(t;T ) = −
∫ T

t

η(s)B(s;T )ds+
c2

2γ2

(

T − t +
2

γ
e−γ(T−t) − 1

2γ
e−2γ(T−t) − 3

2γ

)

. (238)

We next impose conditions such that A(t;T ) and B(t;T ) produce values for zero-coupon
bonds that match market prices today i.e. when t = t∗. Under the assumed model zero-
coupon bonds are given by

ZM(t∗;T ) = eA(t
∗;T )−r∗B(t∗ ;T ) .

so that by taking logarithms this requires that

A(t∗;T ) = log(ZM(t∗;T )) + r∗B(t∗;T ) . (239)

Since B(t∗;T ) is known via Equation 237 (assuming we have a way of calibrating γ) and we
know the functional form for A(t;T ) this is in fact a condition on the function η(·) in the
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expression for A(t;T ). To determine this requirement on the functional form of η(·) we first
set Equation 238 equal to Equation 239 (with t = t∗ and η = η∗) and then take T derivatives
to remove the integrals. Doing this and taking the first T derivative we get

∂

∂T
A(t∗;T ) = −η∗(T )B(T ;T )−

∫ T

t∗
η∗(s)

∂

∂T
B(s;T )ds

+
c2

2γ2
(

1− 2e−γ(T−t
∗) + e−2γ(T−t∗))

=
∂

∂T
log(ZM(t∗;T )) + r∗

∂

∂T
B(t∗;T ) .

Since B(T ;T ) = 0 and ∂
∂T
B(t;T ) = e−γ(T−t) we can put these expressions into the above

and solve for the term with the integral of η∗(s) to get

∫ T

t∗
η∗(s)e−γ(T−s)ds = − ∂

∂T
log(ZM(t∗;T ))− r∗e−γ(T−t

∗)

+
c2

2γ2
(

1− 2e−γ(T−t
∗) + e−2γ(T−t∗)) . (240)

Taking another T derivative of this expression gives

η∗(T )− γ

∫ T

t∗
η∗(s)e−γ(T−s)ds = − ∂2

∂T 2
log(ZM(t∗;T )) + γr∗e−γ(T−t

∗)

+
c2

2γ2
(2γe−γ(T−t

∗) − 2γe−2γ(T−t∗)) .

Solving for η∗(T ) by using Equation 240 we get

η∗(T ) = − ∂2

∂T 2
log(ZM(t∗;T )) + γr∗e−γ(T−t

∗) +
c2

γ
(e−γ(T−t

∗) − e−2γ(T−t∗))

+ γ

[

− ∂

∂T
log(ZM(t∗;T ))− r∗e−γ(T−t

∗) +
c2

2γ2
(1− 2e−γ(T−t

∗) + e−2γ(T−t∗))

]

,

on canceling terms and simplifying

η∗(T ) = − ∂2

∂T 2
log(ZM(t∗;T ))− γ

∂

∂T
log(ZM(t∗;T )) +

c2

2γ
(1− e−2γ(T−t∗)) . (241)

To get the functional form for η(t) (rather than η(T )) i.e. as a function of t while it sounds
funny in words simply replace T in the above with t.

Given the above form for η∗(·), to compute A(t;T ) for any time t, we need to use Equation 238
which based in the form for B(t;T ) means we will need to evaluate (the negative of)

I ≡
∫ T

t

η∗(s)B(s;T )ds ,

since the other terms in Equation 238 are already explicitly given. As a road map of the
calculations ahead, we will first evaluate the integral I (which has several steps) and once
we have that result add it to the remaining terms from Equation 238.
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As evaluating this integral was the trickiest part of this derivation (for me) since there
seemed to be several ways one could try to proceed. We will use the form of η∗(t) given by
Equation 241 and keep most of the expression directly in terms of B(t;T ). When we use
Equation 241 we see that this integral is really three terms

I = −
∫ T

t

∂2

∂s2
log (ZM(t∗; s))B(s;T )ds

− γ

∫ T

t

∂

∂s
log (ZM(t∗; s))B(s;T )ds

+
c2

2γ

∫ T

t

(1− e−2γ(s−t∗))B(s;T )ds .

Lets denote these three terms by I1, I2, and I3. Lets integrate the first term, I1, by parts
where we find

I1 ≡ −
∫ T

t

∂2

∂s2
log (ZM(t∗; s))B(s;T )ds

= − B(s;T )
∂

∂s
log(ZM(t∗; s))

∣

∣

∣

∣

T

t

+

∫ T

t

(

∂

∂s
log(ZM(t∗; s))

)

∂

∂s
B(s;T )ds .

Now since B(T ;T ) = 0 the first term in the above expression becomes

B(t;T )
∂

∂t
log(ZM(t∗; t)) .

To evaluate the second expression note that due to the functional form of B(t;T ) (an expo-
nential) we can easily take its t derivative and relate it back to the functional form of B(t;T )
itself. For example we have

∂

∂s
B(s;T ) =

∂

∂s

(

1

γ
(1− e−γ(T−s))

)

= −e−γ(T−s) = γB(s;T )− 1 ,

which we now use in the second integral to get two terms

γ

∫ T

t

(

∂

∂s
log(ZM(t∗; s))

)

B(s;T )ds−
∫ T

t

∂

∂s
log(ZM(t∗; s))ds .

The first of these two terms exactly cancels the integral term I2 above while the second term
is easily integrated. Thus, due to this cancellation, at this point we have for I1 + I2 the
following

I1 + I2 = B(t;T )
∂

∂t
log(ZM(t∗; t))− log

(

ZM(t∗;T )

ZM(t∗; t)

)

.

We now need to evaluate I3. In great detail, we find

I3 =
c2

2γ2

∫ T

t

(1− e−2γ(s−t∗))(1− e−γ(T−s))ds

=
c2

2γ2

∫ T

t

(1− e−γ(T−s) − e−2γ(s−t∗) + e−γ(s+T−2t∗))ds

=
c2

2γ2

[

T − t− 1

γ
e−γ(T−s)

∣

∣

T

t
+

1

2γ
e−2γ(s−t∗)∣

∣

T

t
− 1

γ
e−γ(s+T−2t∗)

∣

∣

T

t

]

,
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which evaluate to (dropping the coefficient c2

2γ2
)

T − t− 1

γ
(1− e−γ(T−t)) +

1

2γ
(e−2γ(T−t∗) − e−2γ(t−t∗))− 1

γ
(e−γ(2T−2t∗) − e−γ(t+T+2t∗)) .

With this expression we have now completely evaluated I. To get the full expression for
A(t;T ) we need to negate I and add it to the appropriate part of A(t;T ) namely the
exponential terms. The sum we need to evaluate then is

− c2

2γ2

[

T − t− 1

γ
(1− e−γ(T−t)) +

1

2γ
(e−2γ(T−t∗) − e−2γ(t−t∗))

− 1

γ
(e−γ(2T−2t∗) − e−γ(t+T+2t∗))

]

+
c2

2γ2

[

T − t +
2

γ
e−γ(T−t) − 1

2γ
e−2γ(T−t) − 3

2γ

]

= − c2

4γ3
[

1− 2e−γ(T−t) − e−2γ(T−t∗) + e−2γ(T−t) − e−2γ(t−t∗) + 2e−γ(t+T−2t∗)
]

. (242)

To see if we are finished with our derivation lets see if this expression matches the proposed
exponential expressions in A(t;T ) presented in the book. This expression, without the
leading factor of − c2

4γ3
, is

(

e−γ(T−t
∗) − e−γ(t−t

∗)
)2

(e2γ(t−t
∗) − 1) ,

or “squaring” the first factor gives

(e−2γ(T−t∗) − 2e−γ(T+t−2t∗) + e−2γ(t−t∗))(e2γ(t−t
∗) − 1) ,

or multiplying each factor together gives

e−2γ(T−t) − 2e−γ(T−t) + 1− e−2γ(T−t∗) − e−2γ(t−t∗) + 2e−γ(T+t−2t∗) .

This expression matches term for term the expression in Equation 242, thus remembering to
negate the expression I1 + I2 we have found that under the extended Vasicek model of Hull
& White that the expression for A(t;T ) is given by

A(t;T ) = log

(

ZM(t∗;T )

ZM(t∗; t)

)

− B(t;T )
∂

∂t
log(ZM(t∗; t))

− c2

4γ3
(

e−γ(T−t
∗) − e−γ(t−t

∗)
)2

(e2γ(t−t
∗ − 1) (243)

Notes on Yield-Curve Fitting: Against

As suggested by the book for times t close to T let Z be

Z(r, t;T ) = 1 + a(r)(T − t) + b(r)(T − t)2 + c(r)(T − t)3 + · · · , (244)
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or the Taylor series expansion about the maturity time T of bond with value 1. Then to put
the above expression into the zero-coupon stochastic bond pricing equation of

∂Z

∂t
+

1

2
w2∂

2Z

∂r2
+ (u− λw)

∂Z

∂r
− rZ = 0 ,

we need to evaluate several partial derivatives of Z. We find

∂Z

∂t
= −a(r)− 2b(r)(T − t)− 3c(r)(T − t)2 + · · ·

∂Z

∂r
= a′(r)(T − t) + b′(r)(T − t)2 + c′(r)(T − t)3 + · · ·

∂2Z

∂r2
= a′′(r)(T − t) + b′′(r)(T − t)2 + c′′(r)(T − t)3 + · · · .

Then we can put these expressions into the zero-coupon bond pricing equation and group
terms by powers of T − t to find

(−a(r)− r)

+ (−2b(r) +
1

2
w2a′′(r) + (u− λw)a′(r)− ra(r))(T − t)

+ (−3c(r) +
1

2
w2c′′(r) + (u− λw)b′(r)− rb(r))(T − t)2 + · · · = 0 .

Thus we see that a(r) = −r. The equation for the T − t power then gives since a′(r) = −1
and a′′(r) = 0

−2b(r)− (u− λw) + r2 = 0 ,

or

b(r) =
1

2
r2 − 1

2
(u− λw) .

Thus we find that near maturity we have

Z(r, t;T ) ≈ 1− r(T − t) +
1

2
(r2 − u+ λw)(T − t)2 + · · · . (245)

If Z(r, t;T ) is given via Equation 244 then using the approximation

log(1 + x) ≈ x− 1

2
x2 +

1

3
x3 + · · · ,

valid when x ≪ 1 we can evaluate the yield to maturity − 1
T−t log(Z(r, t;T )). The log term

can be simplified as

log(Z(r, t;T )) = log
(

1 + a(T − t) + b(T − t)2 + c(T − t)3 + · · ·
)

= a(T − t) + b(T − t)2 + c(T − t)3 + · · ·
− 1

2

(

a(T − t) + b(T − t)2 + c(T − t)3 + · · ·
)2

+
1

3

(

a(T − t) + b(T − t)2 + c(T − t)3 + · · ·
)3

= a(T − t) + b(T − t)2 + c(T − t)3 + · · ·
− 1

2

(

a2(T − t)2 + 2ab(T − t)3 + · · ·
)

+
1

3

(

a3(T − t)3 + · · ·
)

= a(T − t) +

(

b− 1

2
a2
)

(T − t)2 +

(

c− ab+
1

3

)

(T − t)3 + · · · .
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Thus we have

− 1

T − t
log(Z(r, t;T )) = −a +

(

1

2
a2 − b

)

(T − t) +

(

ab− c− 1

3
a3
)

(T − t)3 + · · ·

Since −a(r) = r the slope of the yield curve is given by

∂

∂(T − t)

[

− log(Z(r, t;T ))

T − t

]

=
1

2
a2 − b

=
1

2
r2 − 1

2
r2 +

1

2
(u− λw) =

1

2
(u− λw) , (246)

and is one half the risk-neutral drift.
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Chapter 32: Interest Rate Derivatives

Notes on the Text

Notes on the relationship between a caplet and a bond option

If we get the cashflow payment max(rL − rc, 0) at the time ti, then by the theory of present
value [2], to determine the value of this cashflow at ti−1 we need to discount it by the factor

1

1 + rLτ
.

Here rL and τ are measured in years (τ is notionally a fraction of a year). Then we have for
the present value of this cash flow at the time ti−1 denoted by PVi−1 the following

PVi−1 =
1

1 + rLτ
max(rL − rc, 0)

=
1

1 + rLτ
max

(

rLτ + 1− 1− rcτ

τ
, 0

)

=
1

τ
max

(

1− 1 + rcτ

1 + rLτ
, 0

)

.

Warning: this is 1
τ
multiplied by the expression presented in the book. Note that the above

expression has a payoff that looks like a put option.

115



Chapter 33 (Convertible Bonds)

Additional Notes on the Text

Convertible Bonds with Random Interest Rate

In this section of these notes we derive the convertible bond pricing equation. Since
both the stock of value S and the interest rate r are random we need two instruments to
hedge our convertible bond with. Thus we consider a portfolio long one convertible bond
(with a maturity date T1), short ∆2 zero-coupon bonds with maturity date T2, and short ∆1

shares of stock. This portfolio will have values given by

Π = V −∆2Z −∆1S .

Then using Ito’s lemma for the two stochastic parameters r and S we have that Π changes
as

dΠ =
∂V

∂t
dt+

∂V

∂S
dS +

∂V

∂r
dr

+
1

2

(

σ2S2∂
2V

∂S2
+ 2ρσSw

∂V

∂S∂r
+ w2∂

2V

∂r2

)

dt

− ∆2

(

∂Z

∂t
dt+

∂Z

∂r
dr +

1

2
w2∂

2Z

∂r2
dt

)

−∆1dS .

Group everything by dt, dS, and dr to get that dΠ looks like

dΠ =

[

∂V

∂t
+

1

2

(

σ2S2∂
2V

∂S2
+ 2ρσSw

∂V

∂S∂r
+ w2∂

2V

∂r2

)

− ∆2

(

∂Z

∂t
+

1

2
w2∂

2Z

∂r2

)]

dt

+

[

∂V

∂S
−∆1

]

dS +

[

∂V

∂r
−∆2

∂Z

∂r

]

dr .

We now pick the hedge values ∆1 and ∆2 such that the above portfolio is deterministic.
That is the coefficients of dS and dr vanish. From the above we see that the coefficient of
dr will be equal to zero if we take

∆2 =
∂V
∂r
∂Z
∂r

,

and the coefficient of dS will be zero if we take

∆1 =
∂V

∂S
.

Once we have done this by setting dΠ = rΠdt (to avoid arbitrage) and dividing by dt we get
the following equation

∂V

∂t
+

1

2

(

σ2S2∂
2V

∂S2
+ 2ρσSw

∂V

∂S∂r
+ w2∂

2V

∂r2

)

−∆2

[

∂Z

∂t
+

1

2

(

w2∂
2Z

∂r2

)]

= rV − r∆2Z − r∆1S

= rV − r∆2Z − rS
∂V

∂S
.
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Putting terms that depend on T1 on one side and terms that depend on T2 on another side
to get

∂V

∂t
+

1

2

(

σ2S2∂
2V

∂S2
+ 2ρσSw

∂V

∂S∂r
+ w2∂

2V

∂r2

)

− rV + rS
∂V

∂S

= ∆2

[

∂Z

∂t
+

1

2
w2∂

2Z

∂r2
− rZ

]

,

or dividing by ∂V
∂r

we get

1
∂V
∂r

(

∂V

∂t
+

1

2

(

σ2S2∂
2V

∂S2
+ 2ρσSw

∂V

∂S∂r
+ w2∂

2V

∂r2

)

− rV + rS
∂V

∂S

)

=
1
∂Z
∂r

(

∂Z

∂t
+

1

2
w2∂

2Z

∂r2
− rZ

)

.

Using Equation 196 with K(r, t) = 0 we see that the right-hand-side of the above equals
−(u− λw). Doing this and simplifying some we get for V (S, r, t) following equation

∂V

∂t
+

1

2

(

σ2S2∂
2V

∂S2
+ 2ρσSw

∂V

∂S∂r
+ w2∂

2V

∂r2

)

− rV + rS
∂V

∂S
+ (u− λw)

∂V

∂r
= 0 , (247)

which is the convertible bond pricing equation. Here λ = λ(r, S, t) is the market price
of interest rate risk.

Notes on a Special Model

If we consider the Vasicek short term interest rate model where the differential equation for
r is given by Equation 223 we can look for solutions to Equation 247 of the following form

V (S, r, t) = g(r, t)H

(

S

g(r, t)
, t

)

, (248)

with g(r, t) = Z(r, t;T ) = eA(t;T )−rB(t;T ) and B(t;T ) given by Equation 224 and A(t;T ) given
by Equation 225.

In the Mathematica file a convertible bond pricing model.nb we substitute the func-
tional form given in Equation 248 into the convertible bond pricing Equation 247. When
we do that the resulting expression involves t and r derivatives of g(r, t). We next replace
the t derivative of g(r, t) using Equation 196. When we do this and make the substitution
of ξ = S

g(r,t)
or S = ξg(r, t) we get

∂H

∂t
+
ξ2

2

(

σ2 − 2wρσ
gr(r, t)

g(r, t)
+ w2gr(r, t)

2

g(r, t)2

)

∂2H

∂ξ2
= 0 .

Since g(r, t) = eA(t;T )−rB(t;T ) we have that

gr(r, t) = −B(t;T )g(r, t) ,
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and the above becomes

∂H

∂t
+
ξ2

2

(

σ2 + 2wρσB(t;T ) + w2B(t;T )2
) ∂2H

∂ξ2
= 0 .

In the Vasicek interest rate model

dr = (u− λw)dt+ wdX = (η − γr)dt+ β1/2dX

so w = β1/2 and the above becomes

∂H

∂t
+
ξ2

2

(

σ2 + 2B(t;T )ρβ1/2σ +B(t;T )2β
) ∂2H

∂ξ2
= 0 ,

the expression quoted in the book. The value just before maturity of V is V (S, T−) =
max(nS, 1) and so

gH(ξ−, T−) = max(nξ−g, 1) ,

or
H(ξ, T−) = max(nξ, 1) .

The no arbitrage constraint of V ≥ nS is g(r, t)H(ξ, t) ≥ nξg(r, t) or

H(ξ, t) ≥ nξ .
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Chapter 34 (Mortgage-backed Securities)

Additional Notes on the Text

Notes on monthly payments in the fixed rate mortgage

If the home is worth a nominal present value of 1 we can use the theory of discounting at an
interest rate of rM to determine monthly payment amount x if the mortgage lasts N years.
The present value of a constant income stream (x, x, · · · , x) where x is payed out 12N times
is given by

12N
∑

i=1

x
(

1 + rM
12

)i = x

12N
∑

i=1

(

1 +
rM
12

)−i
= x

(

1 +
rM
12

)−1
[

1−
(

1 + rM
12

)−12N

1−
(

1 + rM
12

)−1

]

= x

[

1−
(

1 + rM
12

)−12N

1 + rM
12

− 1

]

=
12x

rM

(

1−
(

1 +
rM
12

)−12N
)

.

Where we have used the identity

N
∑

i=1

ai = a

(

1− aN

1− a

)

. (249)

When we solve for x in the above we get

x =
rM/12

1−
(

1 + rM
12

)−12N
.

Notes on Modeling Prepayment: The PSA Model

If we consider the given discussion of the simple PSA model then we see that the CPR as a
function of time t when time is measured in months is given by

CPR =



















t
∏

k=1

(

1− 0.002

12
k

)

0 ≤ t ≤ 30

CPR(30)

(

1− 0.06

12

)t−30

t ≥ 30

.

In the python code plot psa model.py we implement this function and then plot it as a
function of year. When we do that we obtain the plot given in Figure 3. This plot matches
the one given in the book.
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Figure 3: A duplicate of the books figure 34.4.

Notes on Valuing MBS

Using the same discounting logic as above but now in continuous time the present value P
of the loan amount which is replicated with a continuous payment stream of x is given by

P = x

∫ T

t

e−rM (τ−t)dτ . (250)

In a small amount of time dt this expression changes because we must pay the bank that
holds our mortgage an amount rMP but at the same time we make a payment of x. Thus
our mortgage amount P changes as

dP = (rMP − x)dt .

Now consider the case where some fraction, 1 − Q(r, t), of the mortgages are payed off
prematurely. Note this fraction Q is a function of time since inception of the loan t and
the market interest rate r. Then the magnitude of the present value of the income stream
represented by x

∫ T

t
e−rM (τ−t)dτ earlier will change as the fraction of mortgages changes. We

then have

P = xQ

∫ T

t

e−rM (τ−t)dτ ,

Using the product rule dP is given by

dP = dQ

(

x

∫ T

t

e−rM (τ−t)dτ

)

+Qd

(

x

∫ T

t

e−rM (τ−t)dτ

)

= dQ
P

Q
+ (rMP − xQ)dt .
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If we model the change in Q as

dQ = −a(t)f(r)Qdt , (251)

then using the above we get

dP = (rMP − xQ− a(t)f(r)P )dt , (252)

for the differential equation satisfied for P . Note P only has a differential with respect to
t. We would next like to find the differential equation for V (r, P,Q, t), using the evolution
of dQ given by Equation 251, the evolution of dP given by Equation 252 and our standard
model for the spot interest rate dr = (u− λw)dt+wdX . With these modeling assumptions,
the partial differential equation for V (r, P,Q, t) can be argued by following the discussion in
the section “Can I Reverse Engineer a Partial Differential Equation to get the Model and
Contract” given in [4]. Thus since r is a stochastic variable we will need to have terms

Vt +
1

2
w2Vrr + (u− λw)Vr .

Since Q and P depend only on time t via Equations 251 and 252 they will require terms

−a(t)f(r)QVQ and (rMP − xQ− a(t)f(r)P )Vp .

The contract has the present value V and thus there is a −rV term and finally there are
cash flows due to regular payments of the form xQ and due to early prepayments of the form
a(t)f(r)P giving two source terms. When we combined all of these expressions we get

Vt +
1

2
w2Vrr + (u− λw)Vr + (rMP − xQ− a(t)f(r)P )Vp

− a(t)f(r)QVQ − rV + (a(t)f(r)P + xQ) = 0 , (253)

for the equation used to value V . In the special case where r is constant and equal to rM we
have w = 0 and Vr = 0 so the left-hand-side of the above

Vt + (rMP − xQ− a(t)f(rM)P )Vp − a(t)f(rM)QVQ − rMV + a(t)f(rM)P + xQ .

If we then consider this when V = P we have VP = 1, VQ = 0, and Vt = 0 it becomes

rMP − xQ− a(t)f(rM)P − rMP + a(t)f(rM)P + xQ = 0 ,

showing that the MBS Equation 253 is satisfied.
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Chapter 35 (Multi-Factor Interest Rate Modeling)

Additional Notes on the Text

Notes on the theoretical framework for two factors

Following the discussion in the book we have three equations for the two hedge ratios ∆1

and ∆2 given by

∂Z

∂r
−∆1

∂Z1

∂r
−∆2

∂Z2

∂r
= 0 (254)

∂Z

∂l
−∆1

∂Z1

∂l
−∆2

∂Z2

∂l
= 0 (255)

L′(Z)−∆1L′(Z1)−∆2L′(Z2) = 0 . (256)

Since there are three equations and only two unknowns ∆1 and ∆2, the linear system given
by all three equations must be over-specified and thus any one of the equations is a linear
combination of the other two. Because of this fact there exists values λr and λl such that
λrw − u times the first row plus λlq − p times the second row equals the third row. When
we write this out and then group everything by the function Z (similar equations hold for
Z1 and Z2) that

L′(Z) = (λrw − u)
∂Z

∂r
+ (λlq − p)

∂Z

∂l
. (257)

When we write out the expression for L′(Z) and put all terms on one side we get

∂Z

∂t
+

1

2
w2∂

2Z

∂r2
+ ρwq

∂2Z

∂r∂l
+

1

2
q2
∂2Z

∂l2

+ (u− λrw)
∂Z

∂r
+ (p− λlq)

∂Z

∂l
− rZ = 0 . (258)

As an additional piece of information, once we have specified that the third row is a linear
combination of the other two we can simply compute ∆1 and ∆2 by solving Equation 254
and 255. Writing these two equations in the more standard form as

∂Z1

∂r
∆1 +

∂Z2

∂r
∆2 =

∂Z

∂r
∂Z1

∂l
∆1 +

∂Z2

∂l
∆2 =

∂Z

∂l
,

we can solve them using Crammer’s rule. To use this we need the determinant of the
coefficient matrix

D ≡
∣

∣

∣

∣

∂Z1

∂r
∂Z2

∂r
∂Z1

∂l
∂Z2

∂l

∣

∣

∣

∣

=
∂Z1

∂r

∂Z2

∂l
− ∂Z2

∂r

∂Z1

∂l
.

With this then computed ∆1 and ∆2 are then given by

∆1 =
1

D

∣

∣

∣

∣

∂Z
∂r

∂Z2

∂r
∂Z
∂l

∂Z2

∂l

∣

∣

∣

∣

=
1

D

(

∂Z

∂r

∂Z2

∂l
− ∂Z2

∂r

∂Z

∂l

)

∆2 =
1

D

∣

∣

∣

∣

∂Z1

∂r
∂Z
∂r

∂Z1

∂l
∂Z
∂l

∣

∣

∣

∣

=
1

D

(

∂Z1

∂r

∂Z

∂l
− ∂Z1

∂l

∂Z

∂r

)

.

Note I believe the book has a typo in the expression for ∆2.
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Notes on Modeling the Long-term Rate

As discussed in the book a consol bond, C0, must satisfy the pricing equation

L′(C0) + 1 = (λrw − u)
∂C0

∂r
+ (λlq − p)

∂C0

∂l
. (259)

Where the linear operator L′ is given by

L′(Z) ≡ L(Z)− rZ (260)

≡ ∂Z

∂t
+

1

2
w2∂

2Z

∂r2
+ ρwq

∂2Z

∂r∂l
+

1

2
q2
∂2Z

∂l2
− rZ . (261)

The yield l on a consol bond is given by l = 1
C 0

, thus C0 = 1
l
. With this expression have

that ∂C0

∂t
= ∂C0

∂r
= 0, ∂C0

∂l
= − 1

l2
, and ∂2C0

∂l2
= 2

l3
, so we find for Equation 259 the expression

1

2
q2
(

2

l3

)

− r

l
+ 1 = −λlq − p

l2
.

When we solve this for p− λlq we get

p− λlq =
q2

l
− rl + l2 .

Warning: The book has the expression q2

l2
rather than q2

l
for the first term in the above

expression, which I think is a typo. Thus, since we now know an expression for λlq − p in
terms of l we find for Equation 257

L′(Z) = (λrw − u)
∂Z

∂r
−
(

l2 − rl +
q2

l

)

∂Z

∂l
,

where L′(Z) is given by Equation 260.

Notes on General Multi-Factor Models: Vasicek

The general pricing equation for a fixed income instrument V given N factors xi is given by

∂V

∂t
+

1

2

N
∑

i=1

N
∑

j=1

ρijσiσj
∂2V

∂xi∂xj
+

N
∑

i=1

(µi − λiσi)
∂V

∂xi
− rV = 0 . (262)

In general all parameters µi, σi, ρij and λi can be functions of all factors x and time t.
This most general framework makes the model to difficult to solve analytically and we will
postulate some special models that make the model tractable. To further simplify things we
consider the multi-factor Vasicek model where the correlations and volatilities are assumed
to not be functions of the factors x. Furthermore we take all cross correlations zero, and all
model parameters are independent of time t. Thus we have σi(t) = ci,

µi(t)− λi(t)σi(t) = ai −
N
∑

j=1

bijxj ,
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and ρij = dij(t) = 0 if i 6= j. Then assuming a solution to Equation 262 of the form

V (x, t;T ) = exp

{

f0(t, T ) +
N
∑

i=1

fi(t;T )xi

}

, (263)

we can evaluate the needed partial derivatives and find alternative differential equations for
the functions fi. From the form above we find

Vt =

(

ḟ0 +
N
∑

i=1

ḟixi

)

V , Vxi = fiV , and Vxi xj = fifjV .

Putting these in Equation 262, using the stated assumptions, and dividing by V we first get

ḟ0 +

N
∑

i=1

ḟixi +
1

2

N
∑

i=1

σ2
i f

2
i +

N
∑

i=1

(

ai −
N
∑

j=1

bijxj

)

fi − g0(t)−
N
∑

i=1

gi(t)xi = 0 .

Since σi = ci and changing the order of the summations over one of the terms gives

ḟ0 +
N
∑

i=1

ḟixi +
1

2

N
∑

i=1

ci
2f 2
i +

N
∑

i=1

aifi −
N
∑

j=1

(

N
∑

i=1

bijfi

)

xj − g0(t)−
N
∑

i=1

gi(t)xi = 0 .

Grouping the terms by each factor xi gives

ḟ0 +
1

2

N
∑

i=1

ci
2f 2
i +

N
∑

i=1

aifi − g0(t) = 0

ḟi −
N
∑

k=1

bkifk − gi(t) = 0 for i = 1, 2, · · · , N .

The same equations as in the book.
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Chapter 36 (Empirical Behavior of

the Spot Interest Rate)

Additional Notes on the Text

Notes on the volatility structure: νrβ

From the form for dr taken by many popular models of

dr = u(r)dt+ νrβdX , (264)

we have
E[dr2] = O(dt2) +O(dt3/2) + ν2r2βE[dX2] = ν2r2βdt ,

where we have dropped higher order terms in dt. Thus we have

log(E[dr2]) = log(ν2) + log(dt) + 2β log(r) .

Next we take dr ≈ δr and dt ≈ δt, i.e. discretizing r and t by putting these variables into
buckets and with this data plot log(E((δr)2)) vs. log(r). By fitting a least square line to
that we can find values for the parameters ν and β. Using the figure given in the book as
an example, just to understand the procedure, we will attempt to estimate ν. From the
given plot of log(E((δr)2)) vs. log(r) assume we find that the empirical intercept on the
log(E((δr)2)) axis is given by β0. Thus from the above expression we have

log(ν2) + log(δt) ≈ β0 .

Since we are considering daily data where, δt = 1 so that log(δt) = 0 and log(ν) = β0
2

or

ν = e−
β0
2 .

Notes on the drift structure: u(r)

For the short rate dynamics

dr = u(r)dt+ νrβdX ≡ A(r, t)dt+B(r, t)dX

we have A(r, t) = u(r) and B(r, t) = νrβ so the Fokker-Planck equation given by Equa-
tion 218 becomes

∂p

∂t
=

1

2
ν2
∂2(r2βp)

∂r2
− ∂(u(r)p)

∂r
. (265)

As from the previous section we now “know” values for ν and β we want to determine the
functional form form u(r). In steady-state the time derivative above vanishes and if we then
integrate Equation 265 once we have

1

2
ν2

d

dr
(r2βp∞(r))− u(r)p∞(r) = C .
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As discussed in Chapter 30 which begins on Page 90 we need to take the constant of inte-
gration C equal to zero to have p∞(r) represent a valid density. When we do that and solve
for u(r) we find

u(r) =
1

p∞(r)

[

1

2
ν2

d

dr
(r2βp∞(r))

]

=
1

p∞(r)

[

ν2βr2β−1p∞(r) +
ν2

2
r2β

d

dr
(p∞(r))

]

= ν2βr2β−1 +
1

2
ν2r2β

d

dr
log(p∞(r)) .

This gives an expression for u(r) as a function of the steady-state density p∞(r), which
hopefully is easier to estimate. Taking a lognormal distribution with location log(r̄) and
scale a for p∞(r) or

p∞(r) =
1√
2πar

exp

{

− 1

2a2

(

log
(r

r̄

))2
}

.

we can evaluate what this means for u(r). Since

log(p∞(r)) = − log(r)− 1

2a2

(

log
(r

r̄

))2

− 1

2
log(2π)− log(a) so

d

dr
log(p∞(r)) = −1

r
− 1

a2
log
(r

r̄

)

(

1

r

)

.

Thus we get for u(r) the following

u(r) = ν2βr2β−1 +
ν2

2
r2β−1

[

−1− 1

a2
log
(r

r̄

)

]

= ν2r2β−1

[

β − 1

2
− 1

2a2
log
(r

r̄

)

]

.

The book then makes the following statement: “The real spot rate is mean-reverting to 8%”.
Which I don’t understand. I would assume that the value we mean revert to is given by the
value of r that u(r) = 0. From the above functional form we see that this value is given by

r = r̄ea
2(2β−1) ,

If we take the numbers given in the book for the US LIBOR rate given by a = 0.4, r̄ = 0.08,
and β = 1.13 we get r = 0.097, which would make me think that the real spot rate is mean-
reverting to 9.7%. If anyone sees anything wrong with my argument above please contact
me.

Notes on the slope of the yield curve

The equations from this section are derived earlier in these notes, for example Equations 245
and 246.
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Notes on the properties of the forward rate curve on average

Since our short term interest rate dynamics is given by dr = u(r, t)dt + w(r, t)dX when we
consider the steady-state Fokker-Plank Equation 218 with A(r, t) = u(r) and B(r, t) = w(r)
we have

1

2

∂2(w2p∞)

∂r2
=
∂(up∞)

∂r
.

We can integrate each side, recalling as on Page 99 that the constant of integration when we
do so is zero, and then solve for u to get

u =
1

2p∞

d

dr
(w2p∞) . (266)

Doing the same thing but for the risk neutral density p∗∞(r) we have the risk adjusted drift
u− λw equal to the similar expression

u− λw =
1

2p∗∞

d

dr
(w2p∗∞) .

In this expression put in what we know for u from Equation 266 to get

1

2p∞

d

dr
(w2p∞)− λw =

1

2p∗∞

d

dr
(w2p∗∞) .

We next divide both sides by w2

2
to get

1

w2p∞

d

dr
(w2p∞)− 2λ

w
=

1

w2p∗∞

d

dr
(w2p∗∞) .

Now integrating both sides we get

log(w2p∞)− 2

∫ r λ(s)

w(s)
ds = log(w2p∗∞) ,

or

log

(

p∞
p∗∞

)

= 2

∫ r λ(s)

w(s)
ds ,

or solving for p∗∞(r) in terms of p∞(r) we find

p∗∞ = p∞ exp

{

−2

∫ r λ(s)

w(s)
ds

}

. (267)

We can also replace the risk adjusted drift term, u− λw, in the bond pricing Equation 196
in terms of an expression that depends on the risk-neural density to get

∂Z

∂t
+

1

2
w2∂

2Z

∂r2
+

1

2p∗∞

d

dr
(w2p∗∞)

∂Z

∂r
− rZ = 0 . (268)

Consider the middle two terms which we write as

1

2p∗∞

[

w2p∗∞
∂2Z

∂r2
+

d

dr
(w2p∗∞)

∂Z

∂r

]

,
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or using the product rule we have

1

2p∗∞

∂

∂r

[

w2p∗∞
∂Z

∂r

]

.

With this Equation 268 becomes

p∗∞(r)

[

∂Z

∂t
− rZ

]

= −1

2

∂

∂r

[

w2p∗∞(r)
∂Z

∂r

]

.

But we know p∗∞(r) in terms of p∞(r) via Equation 267. When we put that expression in
and then integrate from r = 0 to r = ∞ we get

∫ ∞

0

p∞(r)e−2
∫ r λ(s)

w(s)
ds

(

∂Z

∂t
− rZ

)

dr = 0 .

Assuming time homogeneous of the function Z i.e. that Z(t;T ) = Z(τ) where τ = T − t we
would then have ∂Z

∂t
= −∂Z

∂τ
and the above integral is given by

∫ ∞

0

p∞(r)e−2
∫ r λ(s)

u(s)
ds

(

∂Z

∂τ
− rZ(τ)

)

dr = 0 .

Note that this expression must hold for all values of τ .
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Chapter 37 (The Heath, Jarrow & Morton and

Brace, Gatarek & Musiela Models)

Additional Notes on the Text

Notes on the forward rate equation

In terms of the forward rate curve F (t;T ) the price of a zero-coupon bond at time t that
pays 1 $ at time T is given by

Z(t, T ) = e−
∫ T
t F (t;s)ds . (269)

We then assume that the differential evolution of Z(t;T ) is given by

dZ(t;T ) = µ(t, T )Z(t;T )dt+ σ(t, T )Z(t;T )dX .

Here we are assuming that T > t is fixed and t changes by increasing in the direction of T .
When we take T = t we have Z(t; t) = 1 (a constant) so we expect dZ(t; t) = 0. In addition,
when T = t the increment dt must be 0 since there is no further increase in t possible. Thus
using those values in the above we get

0 = σ(t, t)Z(t; t)dX ,

which since dX 6= 0 means that
σ(t, t) = 0 .

From Equation 269 we can solve for F (t;T ) in terms of Z(t;T ) to get

F (t;T ) = − ∂

∂T
log(Z(t;T )) . (270)

From this we would evaluate that the differential of F (t;T ) as

dF (t;T ) = − ∂

∂T
d(log(Z(t;T ))) , (271)

which shows that to evaluate dF (t;T ) means that we need to evaluate d(log(Z(t;T )) or the
differential of the function of Z, log(Z(t;T )). To evaluate this differential recall that when
the differential of a variable G evolves according to

dG = A(G, t)dt+B(G, t)dX ,

the differential of a function of G, say f(G), is given by

df =

(

A(G, t)
df

dG
+

1

2
B2(G, t)

d2f

dG2

)

dt+B(G, t)
df

dG
dX .

Using this result with
d log(Z)

dZ
=

1

Z
so

d2 log(Z)

dZ2
= − 1

Z2
,
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we can compute d(log(Z(t;T ))) as

d(log(Z(t;T ))) =

(

µZ

(

1

Z

)

+
1

2
σ2Z2

(

− 1

Z2

))

dt+

(

σZ

(

1

Z

))

dX

=

(

µ− 1

2
σ2

)

dt+ σdX .

Where in the above we recall that µ and σ are functions of (t, T ). Then from Equation 271
by taking − ∂

∂T
of this expression to get we have dF (t;T ) given by

dF (t;T ) =
∂

∂T

(

1

2
σ2(t, T )− µ(t, T )

)

dt− ∂

∂T
σ(t, T )dX . (272)

Notes on the dynamics of the spot rate process

We now derive the dynamics for the short term interest rate r(t). To do that we first note
that r(t) is related to the forward rate curve F (t, T ) by setting T = t or r(t) = F (t, t). Let
today be t∗ and t a time in the future t > t∗, then we can write r(t) as

r(t) = F (t, t) = F (t∗, t) +

∫ t

t∗
dF (s; t) .

We use Equation 272 with t → s and T → t, so that we can obtain the needed expression
dF (s; t) as follows

dF (s; t) =
∂

∂t

(

1

2
σ2(s, t)− µ(s, t)

)

ds− ∂

∂t
σ(s, t)dX

=

(

σ(s, t)
∂σ(s, t)

∂t
− ∂µ(s, t)

∂t

)

ds− ∂σ(s, t)

∂t
dX .

Putting this into the expression above for r(t) we get

r(t) = F (t∗, t) +

∫ t

t∗

(

σ(s, t)
∂σ(s, t)

∂t
− ∂µ(s, t)

∂t

)

ds−
∫ t

t∗

∂σ(s, t)

∂t
dX(s) .

Now we have written dX as dX(s) to be the component of randomness that takes place as
s moves towards t from below. With this expression we can now compute dr and find

dr =

{

∂F

∂t
(t∗, t) +

(

σ(s, t)
∂σ(s, t)

∂t
− ∂µ(s, t)

∂t

∣

∣

∣

∣

s=t

+

∫ t

t∗

∂

∂t

(

σ(s, t)
∂σ(s, t)

∂t
− ∂µ(s, t)

∂t

)

ds

− ∂σ(s, t)

∂t

∣

∣

∣

∣

s=t

−
∫ t

t∗

∂2σ(s, t)

∂t2
dX(s)

}

dt .

Here the left round parenthesis before the second term in this expression matchs up with the
“evaluation” notation |s=t to its right expressing the fact that everything between these two
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expressions should be evaluated at s = t. Since σ(t, t) = 0, the second term above vanishes
and we get

dr =

{

∂F

∂t
(t∗, t)−

(

∂µ(s, t)

∂t

∣

∣

∣

∣

s=t

+

∫ t

t∗

(

(

∂σ(s, t)

∂t

)2

+ σ(s, t)
∂2σ(s, t)

∂t2
− ∂2µ(s, t)

∂t2

)

ds

− ∂σ(s, t)

∂t

∣

∣

∣

∣

s=t

−
∫ t

t∗

∂2σ(s, t)

∂t2
dX(s)

}

dt .

Note that the term
∫ t

t∗
∂2σ(s,t)
∂t2

dX(s) makes the process for r non Markov.

Notes on the market price of risk

When the portfolio suggested Z(t;T1)−∆Z(t;T2) is perfectly hedged, then dΠ must equal
rΠ or

dΠ = Z(t;T1)µ(t, T1)−∆z(t;T2)µ(t, T2) = r(t)Π ,

or solving for all of the T1 variables in terms of the T2 variables

Z(t;T1)µ(t, T1)− r(t)Z(t;T1) = ∆ {Z(t;T2)µ(t;T2)− r(t)Z(t;T2)} .

When we replace ∆ with the optimal hedge value given by

∆ =
σ(t, T1)Z(t;T1)

σ(t, T2)Z(t;T2)
, (273)

and again solving for all of the T1 variables in terms of the T2 variables we get

µ(t;T1)− r(t)

σ(t;T1)
=
µ(t;T2)− r(t)

σ(t;T2)
.

Since the left-hand-side is a function of only T1 and the right-hand-side is a function of only
T2 to be equal we need to equate these expressions to something that is independent of T
say λ(t) and get

µ(t, T ) = r(t) + λ(t)σ(t, T ) .

The expression λ(t) is the market price of risk.

Notes on real and risk neutral process for F

In this section we derive the risk neutral dynamics of the forward rate curve, using the known
risk neutral dynamics for the process for dZ(t;T ). To begin, if we take the representation
for dF to be given by

dF (t;T ) = m(t, T )dt+ ν(t, T )dX ,

then by Equation 272 we must have

ν(t, T ) = −∂σ(t, T )
∂T

⇒ σ(t, T ) = −
∫ T

t

ν(t, s)ds , (274)
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since σ(t, t) = 0. In addition µ(t, T ) is given by

∂

∂T

(

1

2
σ2(t, T )− µ(t, T )

)

= σ(t, T )
∂σ(t, T )

∂T
− ∂µ(t, T )

∂T
= ν(t, T )

∫ T

t

ν(t, s)ds− ∂µ(t, T )

∂T
.

In the risk-neutral world for dZ we have µ(t, T ) = r(t), so ∂µ
∂T

= 0 and we have

m(t, T ) = ν(t, T )

∫ T

t

ν(t, s)ds , (275)

so putting everything together we get

dF (t;T ) = ν(t, T )

(
∫ T

t

ν(t, s)ds

)

dt+ ν(t, T )dX , (276)

for the risk neutral process for F .

Simple one factor example: Ho & Lee

Recall that in the Ho & Lee model we have forward rate dynamics given by dr = η(t)dt+cdX
with c =

√
β. This model is discussed on Page 103 of these notes where we derive the

expression for Z(r, t;T ). In the Ho & Lee model the function η(t) is specified to fit the yield
curve at a given time t∗. Mathematically this means that the function η(·) must satisfy

F (t∗;T ) = − ∂

∂T
log(Z(r, t∗;T ))

=
∂

∂T

(

(T − t∗)r(t∗) +

∫ T

t∗
η(s)(T − s)ds− 1

6
c2(T − t∗)3

)

= r(t∗) +

∫ T

t∗
η(s)ds− 1

2
c2(T − t∗)2 . (277)

Thus solving for the integral of η we get

∫ T

t∗
η(s)ds = F (t∗;T ) +

1

2
c2(T − t∗)2 .

To extract the function η we take ∂
∂T

of this expression and evaluate it at T = t to get

η(t) =
∂

∂t
F (t∗; t) + c2(t− t∗) . (278)

Now that we know η(·) as a function we can put it back into Equation 277 with t∗ → t to
get F (t;T ) at any other time t. When we do that we have

dF = dr(t)− η(t)dt+ c2(T − t)dt

= c2(T − t)dt+ cdX ,

when we use the dynamics of the spot rate process dr = η(t)dt + cdX under the Ho & Lee
model.
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Notes on the non-infinitesimal short rate

Let j(t, τ) be an interest rate that is accrued m times per annum. This is related to the
continuous rate F̄ (t, τ) via.

(

1 +
j(t, τ)

m

)m

= eF̄ (t,τ) . (279)

We will want the j(t, τ) rate to follow a lognormal model. This means that we take j(t, τ)
to have the typical lognormal form

dj(t, τ) = mj(t, τ)dt+ γ(t, τ)j(t, τ)dX .

We now solve for F̄ (t, τ) in term of j(t, τ) and j(t, τ) in terms of F̄ (t, τ). First taking the
logarithm of Equation 279 and solving for F̄ (t, τ) we get

F̄ (t, τ) = m log

(

1 +
j(t, τ)

m

)

. (280)

Second taking the mth root of Equation 279 and then solving for j(t, τ) we get

1 +
j(t, τ)

m
= eF̄ (t,τ)/m ⇒ j(t, τ) = m

(

eF̄ (t,τ)/m − 1
)

. (281)

We can take the differential of the expression Equation 280 via Ito’s rule since

dF̄ (t, τ) =

(

dF̄

dj
mj(t, τ) +

1

2
γ2j2

d2F̄

dj2

)

dt+

(

γj
dF̄

dj

)

dX .

Since the needed derivatives are given by

dF̄

dj
=

1

1 + j/m
= e−F̄ /m

d2F̄

dj2
= − 1

m(1 + j/m)2
= − 1

m
e−2F̄ /m ,

we can compute the above differential of F̄ to find

dF̄ =

(

e−F̄ /mmj(t, τ)−
1

2m
γ(t, τ)2j(t, τ)2e−2F̄ /m

)

dt+
(

γm(eF̄ /m − 1)e−F̄ /m
)

dX .

Simplifying the coefficient of dX we get

mγ(t, τ)
(

1− e−F̄ /m
)

,

which is different than the book in that it has a minus sign in the exponential and a different
leading sign.
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Notes on the Brace, Gatarek, and Musiela Model

The dynamics of the forward rate and zero coupon bonds are given by

dFi = µiFidt+ σiFidXi , (282)

and

dZi = rZidt+ Zi

i−1
∑

j=1

aijdXj , (283)

respectively. From Ito’s lemma applied to the one period discounting expression

Zi = (1 + τFi)Zi+1 ,

we have

dZi = (1 + τFi)dZi+1 + τZi+1dFi + τσiFiZi+1

(

i
∑

j=1

ai+1,jρij

)

dt .

Put the expressions for dFi via Equation 282 and dZi via Equation 283 into this to get

rZidt+ Zi

i−1
∑

j=1

aijdXj = (1 + τFi)

(

rZi+1dt + Zi+1

i
∑

j=1

ai+1,jdXj

)

+ τZi+1(µiFidt+ σiFidXi)

+ τσiFiZi+1

(

i
∑

j=1

ai+1,jρij

)

dt .

We will derive recursive relations for aij by considering the above as three separate equations
by equating the coefficients for dXi, dXj (for j ≤ i − 1) and dt. Equating coefficients for
dXi on each side we get

0 = (1 + τFi)Zi+1ai+1,i + τZi+1σiFi ,

or solving for ai+1,i we get

ai+1,i = − σiFiτ

1 + τFi
. (284)

Equating coefficients of dXj on both sides when j = 1, 2, · · · i− 1 gives

Ziaij = (1 + τFi)Zi+1ai+1,j .

Since Zi = (1 + τFi)Zi+1 we obtain

aij = ai+1,j for j < i . (285)

Using Equation 285 as many times as needed we can write

ai+1,j = ai,j = ai−1,j = ai−2,j = · · · = aj+1,j .

Then to evaluate aj+1,j we can use Equation 284 with i = j to conclude that

ai+1,j = − σjFjτ

1 + τFj
for j < i .
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Equating coefficients of dt on both sides we get

rZi = (1 + τFi)rZi+1 + τFi+1µiFi + τσiFiZi+1

(

i
∑

j=1

ai+1,jρij

)

.

As 1 + τFi =
Zi

Zi+1
we have rZi = (1 + τFi)rZi+1 and the terms involving r drop out. We

can solve for µi to get

µi = −σi
i
∑

j=1

ai+1,jρij .
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Chapter 38 (Fixed Income Term Sheets)

Additional Notes on the Text

Notes on index amortizing rate swaps

We value the amortizing swap between reset dates using the standard one-factor interest rate
model where Equation 196 with K(r, t) = 0. On each reset date ti we have two affects. The
first is that the principal P changes and the second is that interest is paid. These together
give an internal boundary condition on V (r, P, t) across ti of

V (r, P, t−i ) = (r − rf)P + V (r, g(r)P, t+i ) .

At the end of the contract t = T there is a final payment

V (r, P, T ) = (r − rf)P .

If we look for a similarity solution for V of the form V (r, P, t) = PH(r, t), then as Equa-
tion 196 is linear and independent of P the differential equation for H is the same as that
for V i.e. Equation 196. The internal jump conditions on V in terms of H are

PH(r, t−i ) = (r − rf)P + g(r)PH(r, t+i ) ,

or dividing by P
H(r, t−i ) = r − rf + g(r)H(r, t+i ) . (286)

The final condition on V in terms of H is PH(r, T ) = (r − rf)P or

H(r, T ) = r − rf . (287)

As in the book, we numerically solve for the function H(r, t) using the code IARS3D.m via
finite differences. We will assume an interest rate model given by

dr = udt+ vol rdX ,

so the function w is w = vol r, and vol is a constant. We also have u − λw = α − βr with
α and β constants. Following the code presented in the book we define the variables rf
as fixedrate, T as expry, ti+1 − ti the time between resets as period, NRS equal to the
number of discretizations of the interest rate r variable, NTS equal to number of discretization
of the time variable. To complete the finite difference formulation we need to discretize the
boundary conditions. We do that now. To evaluate ∂H

∂t
(r = 0, t) we write the bond pricing

differential equation (in H) as

∂H

∂t
= −1

2
w2∂

2H

∂r2
− (u− λw)

∂H

∂r
− rH

= −1

2
vol2r2

∂2H

∂r2
− (α + βr)

∂H

∂r
− rH .
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Figure 4: A duplicate of the books figure 38.7.

When r = 0 the right-hand-side of this expression becomes −α∂H
∂r

thus the boundary condi-
tion at r = 0 is

∂H

∂t
(0, t) = −α∂H

∂r
(0, t) .

When we define
Hi,k = H(i∆r, k∆t) ,

a finite difference approximation to this boundary condition becomes

H0,k+1 −H0,k

dt
= −α

(

H1,k −H0,k

dr

)

,

or

H0,k+1 = H0,k − α
dt

dr
(H1,k −H0,k) .

For the boundary condition when r → ∞ we take ∂2H
∂r2

= 0 to get

HNRS,k+1 − 2HNRS−1,k+1 +HNRS−2,k+1 = 0 ,

which can be solved for HNRS,k+1. The jump conditions are done in a similar way. We
implement a finite difference scheme for solving this PDE in the MATLAB function IAR3D.m.
This function calls the amortizing schedule given in the function amortizing schedule.m

and is driven with the driving code IAR3D driver.m. When that script is run it produces
the plot given in Figure 4. This plot matches quite well the similar plot given in the book.

137



Chapter 39 (Value of the Firm and the Risk of Default)

Additional Notes on the Text

Notes on Merton’s model of equity as a option

In this model we have D, to be the amount of debt that must be payed back at time T and
V is the value of the debt now. Consider a portfolio of the current value of the debt V minus
some fraction ∆ of the share price or

Π = V −∆S .

This is the portfolio that the bank or debt institution would need to hold to perfectly hedge
their risk that the underlying company will not be able to pay back its debts. We consider
V as a function of time t and the underlying assets A of the company so that V = V (t, A).
Since V is the value of the companies debt at time t and A are the current company assets
at the same time we have

S = A− V (t, A) , (288)

so in this model S is a function of t and A also. Then since A evolves according to

dA = µAdt+ σAdX , (289)

we have dΠ given by

dΠ = dV −∆dS

=

(

∂V

∂t
+

1

2
σ2A2∂

2V

∂A2

)

dt+
∂V

∂A
dA−∆

[(

∂S

∂t
+

1

2
σ2A2 ∂

2S

∂A2

)

dt+
∂S

∂A
dA

]

=

(

∂V

∂t
+

1

2
σ2A2∂

2V

∂A2
−∆

∂S

∂t
− 1

2
∆σ2A2 ∂

2S

∂A2

)

dt+

(

∂V

∂A
−∆

∂S

∂A

)

dA .

To make the coefficient of the random term dA equal to zero we pick

∆ =
∂V
∂A
∂S
∂A

.

To avoid arbitrage we set dΠ = rΠdt which gives

∂V

∂t
+

1

2
σ2A2∂

2V

∂A2
− rV = ∆

[

∂S

∂t
+

1

2
σ2A2 ∂

2S

∂A2
− rS

]

. (290)

Using S = A− V we get

∂S

∂t
= −∂V

∂t
,

∂S

∂A
= 1− ∂V

∂A
,

∂2S

∂A2
= −∂

2V

∂A2
, (291)

and ∆ is given by

∆ =
∂V
∂A
∂S
∂A

=
∂V
∂A

1− ∂V
∂A

.
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Using these expressions Equation 290 becomes
(

1− ∂V

∂A

)(

∂V

∂t
+

1

2
σ2A2∂

2V

∂A2
− rV

)

=
∂V

∂A

[

−∂V
∂t

− 1

2
σ2A2∂

2V

∂A2
− rA+ rV

]

.

Canceling terms we get

∂V

∂t
+

1

2
σ2A2∂

2V

∂A2
+ rA

∂V

∂A
− rV = 0 ,

with the final condition of V (A, T ) = min(D,A). If we replace V with expressions in terms
of S using Equations 291, we get the same equation as above but with V replaced by S.
That is S satisfies exactly the same partial differential equation that V does.

Notes on Merton’s model with stochastic interest rates

In this model we introduce a stochastic interest rate r such that

dr = u(r, t)dt+ w(r, t)dX1 ,

and A still has the differential Equation 289. Now V is a function of A, r, and t and S in
terms of V is given by S = A− V . Consider the portfolio Π given by

Π = V (A, r, t)−∆S −∆′Z(r, t) ,

where hedging is done with the stock with value S and a bond with value Z. The differential
of Π is

dΠ = dV −∆dS −∆′dZ .

Using dS = dA− dV and Ito’s lemma to evaluate dV and dZ we get for dΠ

dΠ = dV −∆(dA− dV )−∆′dZ = (1 + ∆)dV −∆dA−∆′dZ

= (1 + ∆)

[

∂V

∂t
dt+

∂V

∂A
dA+

∂V

∂r
dt+

1

2

(

w2∂
2V

∂r2
+ 2ρwσA

∂2V

∂A∂r
+ σ2A2∂

2V

∂A2

)

dt

]

−∆dA

−∆′
[

∂Z

∂t
dt+

1

2
w2∂

2Z

∂r2
dt+

∂Z

∂r
dr

]

=

{

(1 + ∆)

[

∂V

∂t
+

1

2

(

w2∂
2V

∂r2
+ 2ρwσA

∂2V

∂A∂r
+ σ2A2∂

2V

∂A2

)]

−∆′
[

∂Z

∂t
+

1

2
w2∂

2Z

∂r2

]}

dt

=

{

(1 + ∆)
∂V

∂A
−∆

}

dA

=

{

(1 + ∆)
∂V

∂r
−∆′∂Z

∂r

}

dr .

If we pick the hedge ratios ∆ and ∆′ to make both the coefficients of dA and dr equal to
zero we must choose

(1 + ∆)
∂V

∂A
−∆ = 0 ⇒ ∆ =

∂V
∂A

1− ∂V
∂A

(292)

(1 + ∆)
∂V

∂r
−∆′∂Z

∂r
= 0 ⇒ ∆′ =

∆
∂Z
∂r

=
∂V
∂A

(1− ∂V
∂A

)∂Z
∂r

. (293)
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Once this is done to avoid arbitrage we set the deterministic portfolio change, dΠ, equal to
that from a interest bearing account which is rΠdt. Doing this we get

(1 + ∆)

[

∂V

∂t
+

1

2

(

w2∂
2V

∂r2
+ 2ρwσA

∂2V

∂A∂r
+ σ2A2∂

2V

∂A2

)]

−∆′
[

∂Z

∂t
+

1

2
w2∂

2Z

∂r2

]

= r[V −∆S −∆′Z]

= r[V −∆(A− V )−∆′Z]

= r[(1 + ∆)V −∆A−∆′Z] .

When we put the terms that depend on V on the left-hand-side and the terms that depend
on Z on the right-hand-side we have

(1 + ∆)

[

∂V

∂t
+

1

2

(

w2∂
2V

∂r2
+ 2ρwσA

∂2V

∂A∂r
+ σ2A2∂

2V

∂A2

)]

− r [(1 + ∆)V −∆A]

= ∆′
[

∂Z

∂t
+

1

2
w2∂

2Z

∂r2

]

− r∆′Z .

Dividing this by ∆ gives
(

1

∆
+ 1

)[

∂V

∂t
+

1

2

(

w2∂
2V

∂r2
+ 2ρwσA

∂2V

∂A∂r
+ σ2A2∂

2V

∂A2

)]

− r

[(

1

∆
+ 1

)

V −∆A

]

=
1
∂Z
∂r

{[

∂Z

∂t
+

1

2
w2∂

2Z

∂r2

]

− rZ

}

.

To further simplify this first, recall that from Equation 196, with K(r, t) = 0 that the right-
hand-side of the above equals −(u−λw). Next from the definition of ∆ given in Equation 292
that

1

∆
+ 1 =

1
∂V
∂A

.

Thus the above equation becomes

1
∂V
∂A

[

∂V

∂t
+

1

2

(

w2∂
2V

∂r2
+ 2ρwσA

∂2V

∂A∂r
+ σ2A2∂

2V

∂A2

)]

− r

[

V
∂V
∂A

− A

]

= −(u− λw) .

Rearranging this expression some we finally get

∂V

∂t
+

1

2

(

w2∂
2V

∂r2
+ 2ρwσA

∂2V

∂A∂r
+ σ2A2∂

2V

∂A2

)

+ (u− λw)
∂V

∂A
− rV = 0 .

This partial differential equation formulation for V is completed with a specification of the
final condition on V of

V (A, T ) = min(D,A) .

Notes on Modeling with Measurable Parameters and Variables

We assume that E, the gross annualized earnings, evolves according to geometric Brownian
motion dE = µEdt+ σEdX . Here dt is a differential time increment and dX is a stochastic
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increment. We denote C by the cash in the bank when we immediately invest the profits
and is defined in terms of E as

C =

∫ t

0

((1− k)E(τ)−E∗)er(t−τ)dτ .

If we assume that V the value of the company debt is a function of E, t, and C to derive a
partial differential equation for V we need to know what is dC, the differential of C. From
the above expression, by evaluating the integrand at τ = t and then taking the partial
derivative with respect to t inside the integrand (which just brings down an r) we have

dC = ((1− k)E − E∗)dt+ r

(
∫ t

0

((1− k)E(τ)− E∗)er(t−τ)dτ

)

dt

= (((1− k)E − E∗) + rC)dt .

Now that we know the dynamic behavior of E and C in that we know the stochastic differ-
ential equations that they satisfy i.e.

dE = µEdt+ σEdX

dC = ((1− k)E − E∗ + rC)dt ,

we can follow the discussion in the section “Can I Reverse Engineer a Partial Differential
Equation to get the Model and Contract” given in [4] to determine the partial differential
equation that V (E,C, t) must satisfy. Namely, we start with a term like

∂V

∂t
.

Because the stochastic differential equation for E has random term σEdX we will have a
second derivative term like

1

2
(σE)2

∂2V

∂E2
.

Because of the term µEdt in dE we have the first derivative term

µE
∂V

∂E
.

Because of the term ((1− k)E −E∗ + rC)dt in dC we have the first derivative term

((1− k)E − E∗ + rC)
∂V

∂C
.

Finally due to the no arbitrage condition we have a −rV term. Thus in total we get

∂V

∂t
+

1

2
(σE)2

∂2V

∂E2
+ µE

∂V

∂E
+ ((1− k)E −E∗ + rC)

∂V

∂C
+−rV = 0 ,

the same as in the book.
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Chapter 40 (Credit Risk)

Additional Notes on the Text

Notes on stochastic risk of default

We start with the value of our risky bond denoted by V (r, p, t) where r is the spot interest
rate, p is the instantaneous risk of default (so that in a time of dt we have a probability of
default given by pdt) and t is time. We will assume that p and r are stochastic variable that
behave as

dr = u(r, t)dt+ w(r, t)dX2 (294)

dp = γ(r, p, t)dt+ δ(r, p, t)dX1 , (295)

for two Brownian increments dX1 and dX2 and unspecified modeling functions γ, δ, u and
w. Note that we would not expect the functions u and w to depend on the value of p. To
derive the risk neutral pricing equation for V (r, p, t) consider a portfolio of V hedged with
some amount ∆ of risk free bonds or

Π = V (r, p, t)−∆Z(r, t) .

Consider the change in Π in the case of no default (ND) which happens with probability
1− pdt. Then using Ito’s calculus we have

dΠND =

(

∂V

∂t
+

1

2
w2∂

2V

∂r2
+ ρδw

∂2V

∂p∂r
+

1

2
δ2
∂2V

∂p2

)

dt+
∂V

∂r
dr +

∂V

∂p
dp

− ∆

((

∂Z

∂t
+

1

2
w2∂

2Z

∂r2

)

dt+
∂Z

∂r
dr

)

. (296)

We pick the value of the hedge ratio, ∆, to eliminate the dr term thus take

∆ =
∂V
∂r
∂Z
∂r

.

In the case of default (with default or WD), which happens with probability pdt, we loose
the entire value of the risky bond and thus

dΠWD = −V +O(dt1/2) . (297)

Then the expected change in our portfolio Π over dt is given by

E[dΠ] = dΠND(1− pdt) + dΠWD pdt

= dΠND − dΠND pdt+ dΠWD pdt .

Now since by our choice of ∆ the dr term in dΠND has vanished so using Equation 296 the
product dΠND pdt is

dΠND pdt = (stuff)pdt2 + (stuff)dp dt

= (stuff)pdt2 + (stuff)γdt2 + (stuff)δdt3/2 ,
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when we use Equation 295 for dp and the rule of thumb that E[dX ] = dt1/2. These ex-
pressions are all subdominant to dt as dt → 0. Thus we have that to leading order in dt
that

E[dΠ] = dΠND + dΠWD pdt

=

(

∂V

∂t
+

1

2
w2∂

2V

∂r2
+ ρδw

∂2V

∂p∂r
+

1

2
δ2
∂2V

∂p2

)

dt

+ γ
∂V

∂p
dt−∆

(

∂Z

∂t
+

1

2
w2∂

2Z

∂r2

)

dt

− pV dt .

Warning: I’ve replaced the expression dp that multiplies the derivative ∂V
∂p

with γdt but
I’m not sure why I can drop the δdX1 term since dp is governed by Equation 295. If anyone
knows why this is an acceptable approximation please let me know.

To avoid arbitrage we set this expression equal to rΠdt or

r (V −∆Z) dt .

Once we do that we want to put all terms in Z on the left-hand-side and all terms in V on
the right-hand-side as

∆

(

∂Z

∂t
+

1

2
w2∂

2Z

∂r2
− rZ

)

= −pV − rV + γ
∂V

∂p

=
∂V

∂t
+

1

2
w2∂

2V

∂r2
+ ρδw

∂2V

∂p∂r
+

1

2
δ2
∂2V

∂p2
.

Recalling the definition of ∆ and from the one factor bond pricing Equation 196 with K = 0
we have that the left-hand-side of the above is given by

−(u − λw)
∂V

∂r
.

Where λ is the market price of interest rate risk. When we combine these two expressions
we get the stochastic risky bond pricing equation given by

∂V

∂t
+

1

2
w2∂

2V

∂r2
+ ρδw

∂2V

∂p∂r
+

1

2
δ2
∂2V

∂p2
+ (u− λw)

∂V

∂r
+ γ

∂V

∂p
− (r + p)V = 0 . (298)

Note from this expression we can immediately get the non-stochastic risky bond pricing
equation by taking all ∂

∂p
= 0 in the above equation. As a check of our results, if p does not

change at all i.e. is a constant then γ = δ = 0 and Equation 298 becomes

∂V

∂t
+

1

2
w2∂

2V

∂r2
+ (u− λw)

∂V

∂r
− (r + p)V = 0 .

If we let V = e−p(T−t)Z(r, t) and put this into the above equation we see that it is satisfied
and thus when p is constant the solution for V is like a discounted zero risk bond. If we
consider the special case where ρ = 0 and γ and δ are independent of r then γ = γ(p, t) and
δ = δ(p, t) then Equation 298 gives

∂V

∂t
+

1

2
w2∂

2V

∂r2
+

1

2
δ(p, t)2

∂2V

∂p2
+ (u− λw)

∂V

∂r
+ γ(p, t)

∂V

∂p
− (r + p)V = 0 .
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In this equation we can look for a separable solution of the form V (r, p, t) = Z(r, t)H(p, t).
We find the needed derivatives of V given by

∂V

∂t
=

∂Z

∂t
H + Z

∂H

∂t
∂V

∂r
= H

∂Z

∂r
and

∂2V

∂r2
= H

∂2Z

∂r2

∂V

∂p
= Z

∂H

∂p
and

∂2V

∂p2
= Z

∂2H

∂p2
.

Then using these in the partial differential equation above we find that

H
∂Z

∂t
+ Z

∂H

∂t
+

1

2
w2∂

2Z

∂r2
H +

1

2
δ2
∂2H

∂p2
Z + (u− λw)

∂Z

∂r
H + γ

∂H

∂p
Z − (r + p)ZH = 0 .

Lets group the first, third, fifth, and part of the seventh term together on one side to get

H

[

∂Z

∂t
+

1

2
w2∂

2Z

∂r2
+ (u− λw)

∂Z

∂r
− rZ

]

= Z

[

∂H

∂t
+

1

2
δ2
∂2H

∂p2
+ γ

∂H

∂p
Z − pH

]

.

The left-hand-side of this expression is zero via Equation 196 the pricing equation for a risk
less bond and we get that H must satisfy

∂H

∂t
+

1

2
δ2
∂2H

∂p2
+ γ

∂H

∂p
Z − pH = 0 .

In case we have a positive recovery meaning that if the risky bond defaults we get some
payment. We can model this by taking

dΠWD = −V +Q .

Now this dΠWD term enters as a dΠWDpdt the partial differential equation obtained in this
case will have a term pQ in the equation.

Notes on hedging the default

In this section we study if we can use another risky bond V1 to hedge the risk of default. To
study that consider the portfolio Π long one risky bond, short ∆ risk free bonds, and short
∆1 risky bonds V1 given by

Π = V −∆Z −∆1V1 .

We assume that V = V (r, p, t) and V1 = V1(r, p, t) and we assume that p is a constant then
when both bonds do not default we have that our portfolio changes as

dΠND =

(

∂V

∂t
+

1

2
w2∂

2V

∂r2

)

dt+
∂V

∂r
dr (299)

− ∆

[(

∂Z

∂t
+

1

2
w2∂

2Z

∂r2

)

dt+
∂Z

∂r
dr

]

−∆1

[(

∂V1
∂t

+
1

2
w2∂

2V1
∂r2

)

dt+
∂V1
∂r

dr

]

.
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In case both bonds default (we are assuming that they are highly correlated) we have

dΠWD = −V −∆1(−V1) = −V +∆1V1 .

We pick ∆1 such that dΠWD = 0 or in other words to completely eliminate the default risk.
This means we take

∆1 =
V

V1
.

Next we compute the expected portfolio change in value as

E[dΠ] = dΠND(1− pdt) + dΠWD(pdt) = dΠND(1− pdt) .

Since our choice for ∆1 made the expression dΠWD vanish. As argued earlier the term
dΠND(pdt) is subdominant to dΠND we can drop its contribution to simply get

E[dΠ] = dΠND .

Pick ∆ to eliminate dr term in Equation 299 to get

∂V

∂r
−∆

∂Z

∂r
−∆1

∂V1
∂r

= 0 .

or

∆ =
∂V
∂r

−∆1
∂V1
∂r

∂Z
∂r

=
V1

∂V
∂r

− V ∂V1
∂r

V1
∂Z
∂r

. (300)

Thus with these two choices we have

E[dΠ] = dΠND =

(

∂V

∂t
+

1

2
w2∂

2V

∂r2
−∆

(

∂Z

∂t
+

1

2
w2∂

2Z

∂r2

)

−∆1

(

∂V1
∂t

+
1

2
w2∂

2V1
∂r2

))

dt .

To avoid arbitrage we set this equal to rΠdt = r(V −∆Z −∆1V1)dt and get

∂V

∂t
+

1

2
w2∂

2V

∂r2
− rV −∆

(

∂Z

∂t
+

1

2
w2∂Z

∂r
− rZ

)

−∆1

(

∂V1
∂t

+
1

2
w2∂V1

∂r
− rV1

)

= 0 .

Since Z(r, t) must satisfy the one factor bond pricing Equation 196 with K = 0 we have that

∂Z

∂t
+

1

2
w2∂Z

∂r
− rZ = −(u− λw)

∂Z

∂r
,

the expression multiplying ∆ when we use the expression for ∆ in Equation 300 becomes

∂V

∂t
+

1

2
w2∂

2V

∂r2
− rV +

[

∂V

∂r
−∆1

∂V1
∂r

]

(u− λw)−∆1

[

∂V1
∂t

+
1

2
w2∂V1

∂r
− rV1

]

= 0 .

or if we put terms with V on one side of the equation and terms with V1 on the other side
of the equation then we have

∂V

∂t
+

1

2
w2∂

2V

∂r2
− rV + (u− λw)

∂V

∂r
= ∆1

[

∂V1
∂t

+
1

2
w2∂V1

∂r
− rV1 + (u− λw)

∂V1
∂r

]

.

If we multiply this equation by 1
V
then the left-hand-side is a function of V while the right-

hand-side is a function of V1. The only way this is possible is if both sides equal a constant.
We denote this constant as λ1(r, p, t) to get

∂V

∂t
+

1

2
w2∂

2V

∂r2
+ (u− λw)

∂V

∂r
− (r + λ1(r, p, t))V = 0 .

The book seems to then take the expression for the λ1 constant to be linear in p and writes
it as λ1(r, t)p.
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Notes on the forward equation

Since we have P (0, T ) = eTQ if we diagonalize Q as Q =MDM−1 then

P (0, T ) =M(eTD)M−1 .

This means that M also diagonalizes P (0, T ), thus to compute Q we take the given P (0, T )
matrix and diagonalize it as

P (0, T ) =MD′M−1 .

Then set D′ = eTD. Since both sides are diagonal matrices we can compute the elements
of D by taking logarithms of the elements of D′. Once we have the matrices M and D as
above we can form Q as

Q =MDM−1 .

Notes on the backwards equation

Consider the expression for P (t− dt, t′), which represents a transition from the times t− dt
to t′. Break this up into two transitions; one from t − dt to t and the other from t to t′.
Then keeping the order of the matrices consistent we have doing these two steps that

P (t− dt, t′) = P (t− dt, t)P (t, t′) = PdtP (t, t
′) = (I + dtQ)P (t, t′) ,

or
P (t, t′)− P (t− dt, t′)

dt
= −QP (t, t′) .

In the limit that dt→ 0 we get

∂P (t, t′)

∂t
= −QP (t, t′) , (301)

the backwards equation.
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Chapter 41 (Credit Derivatives)

Additional Notes on the Text

Notes on default only when payment is due

Here V is the price/value of the credit derivative and is a function of p the instantaneous
probability of default p and time t so V = V (p, t). Consider a portfolio of V hedged with ∆
amount of the risky bonds Z∗ or

Π = V −∆Z∗ .

Here Z∗ is the market traded risky bond (that might default). Then consider dΠ we have

dΠ = dV −∆dZ∗ .

Then from the definition of p = log(Z/Z∗)
T−t we have that

Z∗ = Ze−p(T−t) .

If we assume that the riskless bond has a value Z = e−r(T−t) then this becomes

Z∗ = e−(r+p)(T−t) .

We further assume that p satisfies the stochastic differential equation

dP = µdt+ σdX .

Then by Ito’s lemma dV is given by

dV =
∂V

∂t
dt +

∂V

∂p
dp+

1

2
σ2∂

2V

∂p2
dt ,

and dZ∗ is given by

dZ∗ =
∂Z∗

∂t
dt+

∂Z∗

∂p
dp+

1

2

∂2Z∗

∂p2
dp2

= pZ∗dt− (T − t)Z∗dp+
1

2
(T − t)2Z∗σ2dt .

So using the expressions for dV and dZ∗ we find dΠ given by

dΠ =

(

∂V

∂t
+

1

2
σ2∂

2V

∂p2

)

dt+
∂V

∂p
dp+∆

(

pZ∗ +
1

2
(T − t)2Z∗σ2

)

dt−∆(T − t)Z∗dp .

If we pick ∆ to make the dp terms vanish we need to take

∆ =

∂V
∂p

(T − t)Z∗ =

∂V
∂p

(T − t)Ze−p(T−t)
=

∂V
∂p

(T − t)e−(r+p)(T−t) , (302)
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when we take the risk free bond price Z to be Z = e−r(T−t). We then set dΠ equal to
rΠdt = r(V −∆Z∗)dt to avoid arbitrage and bring all terms to one side to get

∂V

∂t
+

1

2
σ2∂

2V

∂p2
− rV −∆

(

pZ∗ +
1

2
σ2(T − t)2Z∗ + rZ∗

)

= 0 .

From the fact that Z∗ = e−(r+p)(T−t) and the form for ∆ given by Equation 302 we have that
the product ∆Z∗ is given by

∆Z∗ =
1

T − t

∂V

∂p
,

and we get for the pricing equation for V the following

∂V

∂t
+

1

2
σ2∂

2V

∂p2
+

[

p+ r

T − t
+

1

2
σ2(T − t)

]

∂V

∂p
− rV = 0 . (303)

Warning: In the above expression I have p+r
T−t rather than

p
T−t as the book has. If anyone

sees anything wrong with this derivation please let me know.
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Chapter 43 (CrashMetrics)

Additional Notes on the Text

Notes on CrashMetrics for one stock

We assume that we have a portfolio Π of options on one stock with underlying price S. Then
the change in the portfolio δΠ when the stock changes by δS is given by a function F (·) as

δΠ = F (δS) .

We assume that we can expand δΠ in a second order Taylor expansion and find

δΠ = ∆δS +
1

2
ΓδS2 + · · · , (304)

since F (0) = 0. We can then ask the question as to what is the worst change to our portfolio
over a fixed time frame. Under the assumption that the change in asset price δS over this
fixed time frame is bounded as

−δS− < δS < δS+ , (305)

the value we want to find is
min

−δS−<δS<δS+
F (δS) .

To minimize this we take the first derivative and set it equal to zero as

d(δΠ)

d(δS)
= ∆ + ΓδS = 0 or δS = −∆

Γ
. (306)

Checking the second derivative of F (δS) of the given Taylor series approximation we find

d2(δΠ)

d(δS)2
= ∆ > 0 ,

showing that the δS found above does indeed give a minimum of F (δS). Denoting this value
by δSworst we find the worst value for δΠ in this case and when δSworst satisfies Equation 305
is given by

δΠworst = −∆2

Γ
+

1

2
Γ

(

∆2

Γ2

)

= −∆2

2Γ
.

Notes on portfolio optimization and the platinum hedge

We now assume that we wish to hedge the risk to changes in the value of our portfolio by
buying some number (λ) of a hedge instrument with assumed first derivative ∆∗ and second
derivative Γ∗. After the addition of these λ of the hedge contracts the total portfolio has a
first order exposure to movements in S of

δS(∆ + λ∆∗) ,
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and a second order exposure to movements in S of

1

2
δS2(Γ + λΓ∗) .

When we add in a fixed trading cost of |λ|C (here C is in units of dollars and represents the
bid-offer spread) we have that δΠ becomes

δΠ = δS(∆ + λ∆∗) +
1

2
δS2(Γ + λΓ∗)− |λ|C . (307)

It is this expression we now want to consider with respect to the possible values we could
select for λ. The book defines the Platinum Hedge as the selection of λ that results in the
best possible hedge. To determine how this is computed, we imagine that we have already
selected a value for λ and then consider the worst possible outcome that could happen to
our portfolio. The worst possible outcome is for the market to select a value of δS such
that Equation 307 is as negative (small) as possible. We then desire to pick λ such that the
minimum of Equation 307 is as large as possible. This is a bit similar to minmax problems
in game theory.

Thus given a value of λ the from the equations derived earlier in this chapter the market
will pick the value of δS such that our δΠ is as small as possible. From Equation 306 this
value would be

δSworst = −∆+ λ∆∗

Γ + λΓ∗ .

If this value for δS is not within the bounds given by Equation 305 we will not actually suffer
such a loss and the minimum we suffer will come from one of the end points of the domain
(either −δS− or +δS+). If this value of δSworst is valid, when we put this into Equation 307
our portfolio suffers a loss of amount

δΠworst = −(∆ + λ∆∗)2

2(Γ + λΓ∗)
− |λ|C . (308)

The platinum hedge then picks λ such that we maximize the expression for δΠworst, as a
function of λ. For the greeks and boundary given in the book of

∆ = 10

Γ = 400

∆∗ = 0.5

Γ∗ = 5

C = 0.002

−δS− = −0.05 and + δS+ = +0.05 ,

the function δΠworst(λ) is plotted computed and plotted in the Matlab/Octave scripts
deltaPi vs lambda.m and plot deltaPi.m and is shown as a function of λ in Figure 5.

Notes on the multi-asset/single-index model

To verify our understanding of this section in the python code crash coefficient kappa.py

we estimate a given equities crash coefficient κ. It has a parameter, num of extreme moves,
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Figure 5: Left: A plot of Equation 308 as a function of λ. The λ corresponding to the
maximum gives the optimal hedge. Right: A plot of the corresponding portfolio change δΠ
as a function of δS for an unhedged and a hedged portfolio.

that determines the number of extreme return points to use in estimating κ. Taking the
value of this parameter to be a very large number results in using all of the return points
and the estimated κ is an estimate of the CAPM’s β. An example of the fits this routine
produces is shown in Figure 6, where we estimate the CAPM β and the crash coefficient κ
for Disney DIS against the SPX index.
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Figure 6: Estimated linear fits y = κx and y = βx where κ for the returns of the stock DIS

vs is the returns of the SPX index. Here κ is the crash index and β is the CAPM coefficient.
Note that the numerical estimate of κ is larger than that of β as one would expect from their
definitions.
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Chapter 50: Deterministic Volatility Surfaces

Notes on Backing Out the Local Volatility Surfaces

We find ∂V
∂T

given by using the expression for V (E, T )

∂V

∂T
= −re−r(T−t∗)

∫ ∞

E

(S −E)p(S∗, t∗;S, T )dS

+ e−r(T−t
∗)

∫ ∞

E

(S −E)
∂p

∂T
dS

= −rV + e−r(T−t
∗)

∫ ∞

E

(S − E)
∂p

∂T
dS .

Using the Fokker-Plank equation of

∂p

∂T
=

1

2

∂2

∂S2
(σ2S2p)− ∂

∂S
(rSp) , (309)

for the time derivative (and then integrating by parts) we have

∂V

∂T
= −rV + e−r(T−t

∗)

∫ ∞

E

(S − E)

[

1

2

∂2

∂T 2
(σ2S2p)− ∂

∂S
(rSp)

]

dS

= −rV + e−r(T−t
∗)

[

1

2
(S − E)

∂

∂S
(σ2S2p)

∣

∣

∣

∣

∞

E

− 1

2

∫ ∞

E

∂

∂S
(σ2S2p)dS

− (S − E)rSp|∞E +

∫ ∞

E

rSpdS

]

− rV + e−r(T−t
∗)

[

−1

2
σ2S2p

∣

∣

∣

∣

∞

E

+

∫ ∞

E

rSpdS

]

= −rV + e−r(T−t
∗)

[

1

2
σ2E2p(S∗, t∗;E, T ) + r

∫ ∞

E

SpdS

]

,

which is Equation 25.5. Now writing
∫∞
E
SpdS as

∫ ∞

E

SpdS =

∫ ∞

E

(S − E)pdS + E

∫ ∞

E

pdS

= V er(T−t
∗)E

(

−er(T−t∗)∂V
∂E

)

,

so that

∂V

∂T
= −rV +

1

2
e−r(T−t

∗)σ2E2p

+ re−r(T−t
∗)

(

V er(T−t
∗) − Eer(T−t

∗)∂V

∂E

)

=
1

2
e−r(T−t

∗)σ2E2er(T−t
∗)∂

2V

∂E2
− rE

∂V

∂E
.

or
∂V

∂T
=

1

2
σ2E2∂

2V

∂E2
− rE

∂V

∂E
. (310)

which is the equation in the book.
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Appendix A: Mathematical Notes

Elementary Methods for Solving Differential Equations

Given the inhomogeneous linear first-order differential equation

dy

dt
+ p(t)y = g(t) , (311)

In this section of these notes we review how to solve this differential equation. See [1], for
more details. The solution is given by

y(t) =
1

µ(t)

[
∫

µ(t′)g(t′)dt′ + C

]

,

where C is an arbitrary constant specified to fit the initial condition on y(t) and the “inte-
grating factor” µ(t) is defined as

µ(t) = exp

(
∫

p(t′)dt′
)

. (312)
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