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Abstract. We discuss an inverse source problem for a general parabolic differential equation in
R

n×R+ with constant coefficients and a source whose strength and support may vary with time. We
demonstrate that a knowledge of the solution on any bounded open set M in R

n located away from
the source for any fixed time T ≥ 0 determines the so-called “carrier support” [as originally defined
in the article, Notions of support for far fields, J. Sylvester, Inverse Problems, pp. 1273-1288, vol. 22,
2006] (a nontrivial subset of the support of the true source) at that coincident time. Additionally, we
provide a reconstruction algorithm which can locate the time-varying position of the carrier support
of the assumed unknown source with extremely few discrete (possibly nonuniform) measurements
taken on such an open set over a wide range of regularity classes of the source. Lastly, we provide
a few numerical examples which illustrate the efficacy and robustness of this location and tracking
method.
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1. Introduction. Remote sensing endeavors, especially those in connection with
modern defense and industrial quality control applications, have significantly evolved
in recent years in both their technologies and the realistic scenarios they address.
In particular, the release of toxic or impure substances into an environment of in-
terest, urban or otherwise, by either intentional or unintentional means has become
an outstanding contemporary problem of considerable and immediate importance
and consequence. Recently, many promising technologies, such as those presented
in [12, 7, 4, 6, 14, 13], have been created which can remotely detect the presence of
foreign materials in a region of interest and estimate their concentration as a func-
tion of position and time, provided one has ample knowledge of the diffusion field on
either large spatial measurment sets, or over long periods of time, or both. Clearly,
however, we can never hope to simultaneously monitor vast regions of space in many
real world settings, nor can we tolerate the need for long periods of meaurement time,
or indefinite ones for that matter. Hence, there is an immediate need to possess the
capability to quickly detect and determine the location(s) and output strength(s) of
life-threatening, or otherwise destructive, sources with extremely limited measure-
ments in space and time of such diffusing substances.

An immediate extension of the work developed in [10] and more recently in [16]
is made in this article that efficiently treats the problem of determining the location
of a (potentially mobile) source in a generalized advection-diffusion environment with
exteremly limited real world resources. For instance, the technology lends itself ex-
tremely well to the problem of the airborne release of a life-threatening substance
above ground or in an underground subway system. Specifically, in n-dimensional

∗This research was partially supported by the Centre Nationale de la Recherche Scientifique
(CNRS) France, while the first author was a research fellow at the Laboratoire POEMS, UMR 2706,
CNRS/ENSTA/INRIA, Ecole Nationale Supérière de Techniques Avancées (ENSTA), 32 Boulevard
Victor, 75739 Paris cedex 15, France.

†New Frontier Advisors, LLC, Boston, MA 02110 (skusiak@newfrontieradvisors.com).
‡Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA 02420

(wax@alum.mit.edu).

1



2 STEVEN KUSIAK AND JOHN WEATHERWAX

space, if the concentration of the diffusing substance can be measured on a small,
coarsely sampled or highly distributed, n-dimensional array of sensors, at a single
snap-shot in time, then we can robustly, and expeditiously, determine the location
of the source with tremendous accuracy in the presence of considerable measurment
noise. Hence, with a collection of such time snap-shots of measurement data, we fur-
ther show that we are able to locate the time-varying position of a moving source and
track its current location. Such a capability is of tremendous value to time-sustained
source release problems across a variety of scenarios.

We begin the analytical treatment of this problem by considering the general
nonhomogeneous second order parabolic partial differential equation

(∂t − Lx)u(x, t) = f(x, t), u(x, 0) = 0, (x, t) ∈ Rn × R+, n ≥ 1 (1.1)

where we define the elliptic operator Lx as

Lx :=

n
∑

i,j=1

ai,j∂xi∂xj +

n
∑

j=1

bj∂xj + c,

which governs such things as the molecular diffusion of gases, or particulates, gen-
erated by the autonomous source f throughout x ∈ Rn and over time t ∈ R+. For
the purposes of clarity we will limit ourselves to the treatment of the case where Lx

has constant coefficients. We note; however, that much of the following analysis and
framework suits the more general case of coefficients which at least vary with position.
This is in fact the aim of future work.

In the treatment to follow we will assume that the source may be decomposed
into the product of a temporally dependent function s ≥ 0 with a potentially spatially
dependent and mobile one g ≥ 0, such that

f(x, t) = g(x− γ(t))s(t) ≥ 0 ∀ (x, t) ∈ Rn × R+

where, a priori, g is assumed to be compactly supported for each time t within the
domain BR(p), i.e., the ball of radius R and center p, and γ : [0, T ] → Rn, T ≥ 0.
Moreover, we assume that the structure of the strength function s is such that s
identically vanishes for values of t < 0 and takes on the form of regular, or possibly
singular distribution, for values of t ≥ 0, e.g., the Dirac-delta distribution or the
Heaviside function.

Characterization of the source amounts to determining the (possibly time-varying)
carrier support – which we will define in detail to follow, and for more detail we refer
to [16] – of the source f , which we will assume to be strictly positive for this article.
The concept of the carrier support generalizes that of the so-called scattering support
which was originally defined and analyzed in much detail in [10]. In short, for any
differential operator, such as P = ∂t − Lx, which admits the concept of the unique
continuation principle (UCP)1 the carrier support of the measured field u on M
at time T in the differential equation Pu = f , where f is compactly supported, is
that subset of the support of f such that there exists an equivalent source f̃ = g̃s̃
(with f̃ residing in the same regularity class as f , and where f̃ 6= f in the sense of
distributions) in the sense that Pu = f̃ everywhere on the complement of the support
of f . We summarize this concept with the following definition.

1Suppose Pu = 0 in some domain V . Then, if u restricted to an open subset M ⊂ V vanishes,
the UCP implies that u vanishes throughout the larger domain V .
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Definition 1.1. (Carrier Support) Let P be a differential operator which admits
the UCP such that Pu = f on V and supp f ⊂ Ω ( V, and let P possess the
fundamental solution EP . Then, for some open set M ⊂ V, where M∩ Ω = ∅, and
τ ≤ T ,

carr supp u(·, T )|M :=
⋂

EP ∗f̃=u(·,T )|M

ch supp f̃(·, τ), 0 ≤ τ ≤ T,

where ch denotes the convex hull.
In summary, this definition states that the carrier support of the solution u re-

stricted to the set M is that common set over all possible sets such that there exists
a compactly supported source away from M such that u on M may be generated by
such a candidate source f̃ , i.e., P ũ = f̃ on V and ũ agrees with u on V\ch supp f .

We should also remark that this definition implies that there exists the possibility
that the source generating the data u on M could have existed previous to time T ,
i.e., T ≥ τ . This means that the solution as observed on M is that of a now-extinct
source that last existed at time τ whose support was last on supp g̃(·, τ). This may be
summarized through the following (identity) example. Let Hτ (t) denote the Heaviside
function2, and suppose for 0 ≤ τ1 < τ2,

f(x, t) = δγ(t)(x) (Hτ1(t) −Hτ2(t))

moves along the trajectory γ : [0, T ] → Rn. Then,

carr supp u(·, t)|M =











∅, t < τ1

supp δγ(t)(x), τ1 ≤ t ≤ τ2

supp δγ(τ2)(x), t ≥ τ2

.

It should be mentioned that this is a very desirable phenomenon, in that detection
of the location of an impulse-like source released at time τ ≥ 0 can be made with the
observed data u on M at time t ≥ τ . This amounts to the ability to track mobile
time-sustained sources and determine the point of detonation of impulse-like ones;
both of which are invaluable capabilities for a variety of modern and future endeavors
across many disciplines and industries.

We note that even though – as we shall come to prove in the following section –
we can determine the current location, or that final one when the source’s strength
was last nonzero, with a snapshot of the current diffusion field on M, we cannot
reconstruct the entirety of γ over all times subsequent to t. In particular this means
we may analytically extend the solution u of the homogeneous equation (∂t−Lx)u = 0
back to time t∗ at which minimal time u was the solution of a nonhomogeneous
equation of the form (∂t − Lx)u = f̃ 6= 0. Again, we shall revisit this concept in
further detail and provide all the necessary technical arguments which support this
notion in the following section, and in the proof of our main result (Theorem 3.2) in
section 3.

2For a test function φ ∈ C∞(Rn ×R), for δγ(t)Hτ ∈ E ′(Rn)⊗D′(R), we define the action of the
distributional pairing

〈δγ(t)Hτ , φ〉 =

Z ∞

τ

Z

Rx

φ(x, t)δ(x − γ(t))dxdt.
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Several results have been presented to date which can determine the actual sup-
port of the source and its strength function s as a function of time, see for example
[12, 7, 4, 6]. The fundamental difference in these methods and that to follow in this
article is that we only require knowledge of the scalar diffusion field at single snap-
shots in time on some (possibly small) open subset of the ambient space Rn which we
will assume to be disjointly located from the source in question. Since we require far
less information than that required in these previous works, we might expect to fail
to fully characterize the source in all its attributes. We shall come to see that this is
indeed the case, and that what we can estimate with this limited information is that
of the carrier support of the instantaneous support of the true source f at each point
T ≥ 0 in time. We accomplish this by following a strategy similar in nature to the one
presented in the articles [10, 11]. Essentially, we employ a unique continuation-like
strategy for the assumed positive solution which with the Picard Theorem, gives us a
way to uniquely determine the carrier support at any time T . We will describe these
ideas in much further detail in what follows in a subsequent section.

We again stress the importance of having measurements on some limited finite
domain located away from the source, and which need not surround the source, which
serves such applications as source-release problems in complex urban environments,
and atmospheric or reservoir problems. More importantly, if the source is moving,
we wish to determine its trajectory, and current location, for purposes of perhaps
its rapid neutralization, i.e., the source is emitting toxic or impure substances into a
domain of interest.

We will make several assumptions on the nature of the coefficients appearing in
Lx and of that of the bounded open set M ⊂ Rn where will assume to know the scalar
values of the time-varying field u(x, t), for instance we require M to have a smooth
boundary for the purposes of maintaining well-behaved norms of the solution on such
sets of interest. Additionally, we will define a few function spaces of interest in which
our solutions of the main problem will uniquely exist.

Remark 1. In the analysis to follow in the upcoming section, we will assume
that the following conditions hold:

• ∂t − Lx is parabolic on Rn × R, i.e.,
n

∑

i,j=1

ai,jξiξj > 0, R ∋ ξi, ξj 6= 0

• c ≤ 0
• the matrix of coefficients ai,j is positive definite and invertible

Remark 2. Additionally, for −n/2 < σ1 ≤ 0, and −1/2 < σ2 ≤ 0, we define the
function spaces3

o

Hσ1
+ (Ω) = {g ∈ Hσ1(Rn) : g ≥ 0, supp g ⊂ Ω},

where Hσ is the usual Sobolev space of regularity σ ∈ R, and similarly

Hσ1
+ (R) = {g ∈ Hσ1(R) : g ≥ 0}.

Using these conventions we define the positive space of sources, i.e., distributions,

f ∈
o

Hσ1
+ (Ω)

⊗ o

Hσ2
+ ([0, T ])

3We wish to include singular temporal and spatial distributions such as the Dirac-delta distri-
bution in the larger collection of positive sources, hence we are interested in taking 0 ≥ σ1 > −n/2,
and 0 ≥ σ2 > −1/2.
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and the space of restricted solutions

u|M ∈ L2
+

(

[0, T ], L2
+(M)

)

where

L2
+(Rn) = {g ∈ L2(Rn) : g ≥ 0}.

In order to minimize symbolic clutter, and ease notation a bit, we make the fol-
lowing identification

Xσ1,σ2

f (Ω, T ) =
o

Hσ1
+ (Ω)

⊗ o

Hσ2
+ ([0, T ])

and note that its dual space admits the representation

(

Xσ1,σ2

f

)′

= H−σ1
+ (Rn)

⊗

H−σ2
+ (R+)

for any finite T and bounded M. Finally, we note that since 0 ≤ −σ1 < n/2 and
0 ≤ −σ2 < 1/2, by (complex) interpolation, i.e., see for instance page 277 of [17]

[L2(Rn), Hk(Rn)]θ = Hkθ(Rn), k = 0, 1, 2, · · · , 0 ≤ θ ≤ 1

we have the inclusion

Hn
+(Rn)

⊗

H1
+(R+) ⊂

(

Xσ1,σ2

f

)′

⊂ L2
+(Rn)

⊗

L2
+(R+).

This last fact will be important for us in characterizing the behavior of the solution in
the following section on the forward problem.

The plan of the remainder of the paper is as follows. In section two we discuss the
forward problem. Namely, we describe how given a well-defined source f generates
the solution u and develop the appropriate mapping characterizations between the
two. In the following third section, we focus on the inverse source problem, which
again, is to locate the support of f from measurements of the diffusion field u taken on
some open region which is disjoint and distant from the assumed unknown source f .
In this section we both prove uniqueness results for the time-varying reconstruction
of the carrier support of f as well as developing a viable reconstruction method which
estimates it with little, sparse and possibly nonuniformly sampled data. Section
four considers a few numerical examples which robustly illustrate the simplicity and
effectiveness of this reconstruction algorithm for a spatially stationary, impulse-like
point-source release in one dimension and a time-sustained, moving point source in a
convective two dimensional environment.

2. The Forward Problem. We begin this section by noting that the solution
of (1.1) is well known and may be constructed with the aid of a fundamental solution
which we will call Z, see [5, 3] for the original details of this parametrix-based method.
Spefically, let A = det ai,j and ai,j be the determinant and matrix inverse of the
positive definite matrix a respectively. Then,

u(x, t) =

∫ t

0

∫

Rn
y

Z(x, y, t, τ)f(y, τ)dydτ, (2.1)
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where

Z(x, y, t, τ) = W (x, y, t, τ) +

∫ t

τ

∫

Rn
z

W (x, z, t, s)Φ(z, y, s, τ)dzds

and where we define

W (x, y, t, τ) = [(4π(t− τ))nA]
−1/2

exp



−
n

∑

i,j=1

ai,j(xi − yi)(xj − yj)

4(t− τ)





and lastly require that Φ satisfy

Φ(x, y, t, τ) = (Lx − ∂t)W (x, y, t, τ) +

∫ t

τ

∫

Rn
z

(Lx − ∂t)W (x, z, t, s)Φ(z, y, s, τ)dzds.

For convenience we will denote the action of Z on f as simply Zf . Furthermore,
we will denote the restriction of Z to observations on M and limited to sources f
having compact support on Ω as Z|(M,Ω) in what is to follow. Additionally, we note
that we will write Z(x − y, t − τ) in the place of Z(x, y, t, τ) when it appears in
the context of the kernel of the convolution integral which maps the source f to the
solution u.

We recall some important properties established in [5]. We use them to prove the
following boundedness and denseness result.

Proposition 2.1. (Local Boundedness of the Solution on M) Given the assump-
tions detailed earlier in remarks 1 and 2, then for each T ≥ 0, Z : Xσ1,σ2

f (Ω, T ) →
L2

+,loc(R
n\Ω) and has dense range in the latter space.

Proof. First, for x ∈ Rn\Ω,

|u(·, T )|2 =

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

Z(x− y, T − τ)f(y, τ)dydτ

∣

∣

∣

∣

∣

2

=
∣

∣〈Z, f〉L2(Ω×[0,T ])

∣

∣

2

≤ ‖Z(x− ·, T − ·)‖2

(X
σ1,σ2
f )′

‖f‖2
X

σ1,σ2
f (Ω,T )

≤ ‖Z(x− ·, T − ·)‖2
“

X
n/2,1/2
f

”′‖f‖2
X

σ1,σ2
f (Ω,T )

≤ ‖Z(x− ·, T − ·)‖2

(Xn,1
f )

′‖f‖2
X

σ1.σ2
f (Ω,T )

.

Then, according to the Malgrange-Ehrenpreis theorem, the remainder of the proof
follows immediately from the fact that Z(x− ·, T − ·) is smooth on M, i.e., that

∫

K

‖Z(x− ·, T − ·)‖2

(Xn,1
f )

′dx <∞

for all compact subsets K in Rn\Ω.
We now employ some supporting facts of interest discussed and proven in chapter

1, and theorems 1 and 15, of [5] which help us to establish the claim that Z as a map
from Xσ1,σ2

f (Ω, T ) into L2
+,loc(R

n\Ω) has dense range in L2
+,loc(R

n\Ω). We first note,
as given on page 28 of [5], that Z and its adjoint are related through the identity

Z(x, y, t, τ) = Z∗(y, x, τ, t), t > τ
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We also remark that, again under the assumptions made in remark 1, Z is a positive
kernel, in the sense that the action of Z on any non-negative source f must be greater
than or equal to zero. Next, we examine the homogeneous integral equation for the
unknown function v ∈ L2

+,loc(R
n\Ω),

(Z∗v) (x, t) = 0. (2.2)

Since v is non-negative, in addition to the action Z∗ on any non-negative function in
its domain, then it follows that equation 2.2 admits only the trivial solution v = 0.
Hence, according to proposition 2.3 on page 46 of [9], Z as a map from Xσ1,σ2

f (Ω, T )

to L2
+,loc(R

n\Ω) has dense range in L2
+,loc(R

n\Ω).

We now consider a unique continuation principle for general parabolic differential
equations. Friedman [5] has shown, for p0 = (x0, t0) ∈ Rn × R+ and

N(p0) = {(x, t) ∈ Rn × R+ : 0 ≤ t ≤ t0,

and the cylinder {x} × [0, t] centered at p0 is simply connected as t increases},

that
Proposition 2.2. If (∂t − Lx)u ≤ 0 ((∂t − Lx)u ≥ 0) in Rn × R+ and if u

has a positive maximum (negative minimum) which is attained at p0 = (x0, t0), then
u(p) = u(p0) for all p ∈ N(p0).

This proposition implies that should u vanish on any open, simply connected
subset of Rn for any T ≥ 0, then u must vanish everywhere such that u remains a
(homogeneous) solution of (∂t − Lx)u = 0. This property is essential in the range
characterization to follow and to our estimation of the carrier support of u(·, T )|M.

We now turn our attention to a few fundamental properties of the restriction
of Z to the sets M and Ω, which we call Z|(M,Ω), and note that it is especially
important for our inverse problem of determining the location of the unknown source
f given measurements away from, and not necessarily surrounding, it. In what follows,
R(Z|(M,Ω)) denotes the range of Z|(M,Ω).

Proposition 2.3. Let Ω1,2 ∈ Rn be two convex open sets whose closures have
empty intersection, and suppose M∩ (Ω1 ∪ Ω2) = ∅. Then,

R
(

Z|(M,Ω1)

)

∩R
(

Z|(M,Ω2)

)

= {0}.

Proof. Let Ω1 ∩ Ω2 = ∅ and let

(∂t − Lx)u1 = f1, suppf1(·, t) ⊂ Ω1

(∂t − Lx)u2 = f2, suppf2(·, t) ⊂ Ω2

such that u1 and u2 do not vanish on M. Next, let v = u1 − u2. Then, v satisfies

(∂t − Lx)v = f1, on Ω1

(Lx − ∂t)v = f2, on Ω2

so that v = u1 on Ω1 and v = −u2 on Ω2. Hence, u1,2 vanish on Ω2,1, respectively.
Then, by proposition 2.2, u1 and u2 must also vanish on Rn\Ω2,1. Hence, u1,2 ≡ 0 on
M. This is a contradiction.
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We now consider the remainder of the fundamental properties of the restricted
mapping Z|(M,Ω).

Proposition 2.4. Let M and Ω be open subsets of Rn such that Ω ⊃ supp f(·, t)
for all time t ∈ [0, T ] and assume M ∩ Ω = ∅ . Then, for all T ≥ 0, Z|(M,Ω) :
Xσ1,σ2

f (Ω, T ) → L2
+(M) is a compact linear map and has dense range in the latter

space.
Proof. Let f ∈ Xσ1,σ2

f (Ω, T ). Since Z(x − ·, t − ·) ∈ C∞
+ (Rn\Ω × [0, T ]) by the

Malgrange-Ehrenpreis theorem, for each T ≥ 0 we have

‖(Z|(M,Ω)f)(·, T )‖2
L2

+(M) =

∫

M

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

Z(x− y, T − τ)f(y, τ)dydτ

∣

∣

∣

∣

∣

2

dx

=

∫

M

∣

∣

∣〈Z, f〉L2
+(Rn×[0,T ])

∣

∣

∣

2

dx

≤
∫

M

‖Z(x− ·, T − ·)‖2

(X
σ1,σ2
f )

′‖f‖2
X

σ1,σ2
f

(Ω,T )dx

≤
∫

M

‖Z(x− ·, T − ·)‖2
“

X
n/2,1/2
f

”′‖f‖2
X

σ1,σ2
f (Ω,T )dx

≤
∫

M

‖Z(x− ·, T − ·)‖2

(Xn,1
f )

′‖f‖2
X

σ1,σ2
f (Ω,T )

dx

≤ C1,n,Ω,M‖f‖2
X

σ1,σ2
f (Ω,T ),

where C1,n,Ω,M is a constant given by

C1,n,Ω,M = nµ(M)max
M

‖Z(x− ·, T − ·)‖2

(Xn,1
f )

′ <∞.

Now, since

‖Z(x−·, T −·)f‖2
Hn

+(M) = ‖Z(x−·, T −·)f‖2
L2

+(M) +‖
n

∑

k,i=1

∂k
xi
Z(x−·, T −·)f‖2

L2
+(M),

Dirichlet’s theorem and the same arguments above imply that

‖
n

∑

k,i=1

∂k
xi
Z(x− ·, T − ·)f‖2

L2
+(M) ≤ C2,n,Ω,M‖f‖2

X
σ1,σ2
f (Ω,T )

where

C2,n,Ω,M = nµ(M) max
M

1≤k≤n

‖Z(x− ·, T − ·)‖2

(Xk,1
f )

′ <∞.

Hence, Z is bounded between
o

Hσ1
+ (Ω)

⊗

o

Hσ2
+ ([0, T ]) and Hn

+(M). Finally, since the
inclusion maps

Hn
+(M)

i→֒ Hn−1
+ (M)

i→֒ · · · i→֒ H1
+(M)

i→֒ L2
+(M)

are compact, see for example theorem 6.98 in [15], so must it be that Z is compact

from the source space
o

Hσ1
+ (Ω)

⊗

o

Hσ2
+ ([0, T ]) into L2

+(M) for each T .
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Lastly, Z|(M,Ω) has dense range in L2
+(M) since, according to proposition 2.1,

the adjoint equation posed on Rn × R+

Z∗v(x, t) = 0

implies v(x, t) vanishes throughout Rn ×R, and again according to proposition 2.3 on
page 46 of [9], while linearity of Z|(M,Ω) is clear.

Of interest to us in the following section on the inverse problem is the existence
of the Hilbert adjoint of this restricted operator. This result follows as a corollary to
the previous proposition. That is,

Corollary 2.5. (Hilbert Adjoint) Let M and Ω be open subsets of Rn such that
Ω ⊃ supp f(·, T ) and assume M∩Ω = ∅ . Then, for all T ∈ R+, Z|∗(M,Ω) : L2

+(M) →
Xσ1,σ2

f (Ω, T ) exists as a bounded linear map. Moreover,

(

Z|∗(M,Ω)u
)

(x, T ) =

∫

M

Z(z − x, T )u(z, T )dz.

Proof. Let f ∈ Xσ1,σ2

f (Ω, T ) and suppose u(·, T ) ∈ L2
+(M). Since M, Ω and T

are all bounded, then each of the spaces on which integrate are sigma finite, and hence
we may interchange all orders of integration. We arrive at the formula for Z|∗(M,Ω)

by noting that,

〈u(·, T )|M,Z|(M,Ω)f〉L2
+(M) =

∫

M

u(x, T )

∫ T

0

∫

Ω

Z(x− y, T − τ)f(y, τ)dydτdx

=

∫ T

0

∫

Ω

∫

M

u(x, T )Z(x− y, T − τ)dxf(y, τ)dydτ

= 〈Z|∗(M,Ω)u(·, T )|M, f〉L2
+(Rn×[0,T ])

Hence,

(

Z|∗(M,Ω)u
)

(x, T ) =

∫

M

Z(z − x, T )u(z, T )dz.

Similarly, we complete the proof by noting that

∣

∣

∣〈u(·, T )|M,Z|(M,Ω)f〉L2
+(M)

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∫

M

u(x, T )

∫ T

0

∫

Ω

Z(x− y, T − τ)f(y, τ)dydτdx

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

∫

M

u(x, T )Z(x− y, T − τ)dxf(y, τ)dydτ

∣

∣

∣

∣

∣

2

=
∣

∣

∣〈Z|∗(M,Ω)u(·, T )|M, f〉L2
+(Rn×[0,T ])

∣

∣

∣

2

≤ ‖Z|∗(M,Ω)u(·, T )|M‖2
“

X
σ1,n/2

f (Ω,T )
”′‖f‖2

X
σ1,σ2
f (Ω,T )

<∞.

To ease notation, in what follows R
(

Z|Xσ1,σ2
f (Ω,T )

)

denotes the range of Z re-

stricted to positive sources supported on the set Ω and observations limited to M.
Additionally, we will use the shorthand Z to denote Z|(M,Ω). Finally, if Ω is a set in
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Rn, then Nǫ(Ω) denotes the union of the set Ω and an neighborhood of its boundary,
so that Ω is strictly contained in Nǫ(Ω) for each ǫ > 0.

We are now able to fully characterize the range of Z|(M,Ω) acting on distributions
in the spaceXσ1,σ2

f (Ω, T ) for various sets Ω, without specifying their regularity param-

eter σ = (σ1, σ2) ∈ R2. This will prove of much use in the numerical implementation
and of the forthcoming result. That is we have,

Proposition 2.6. Let Ω1,2 be bounded convex subsets of Rn with smooth bound-
aries Then,

R(Z|Xσ1,σ2
f (Ω1∩Ω2,T )) ⊂ R(Z|Xσ1,σ2

f (Ω1,T ))∩R(Z|Xσ1,σ2
f (Ω2,T )) ⊂ R(Z|X0,0

f (Nǫ(Ω1∪Ω2),T )).

Proof. Let t ∈ [0, T ] and let Ω1,2 be as stated above. The left lower containment
follows from the fact that for f1,2 ∈ Xσ1,σ2

f (Ω1,2, T ), then the trivial extension of the
form

f̃1(x, t) =

{

f1(x, t), (x, t) ∈ Ω1 × [0, T ]

0, x /∈ Ω1

ensures the containment.

Next, in the spirit of the proof of Lemma 3.6 in [10] let f1,2 ∈ Xσ1,σ2

f (Ω1,2, T )
such that for each T , Zf1 = Zf2 = u|M. Then, by the unique continuation principle
given in proposition 2.2 we have

(Zf1)(x, T ) = (Zf2)(x, T ), x ∈ Rn\(Ω1 ∪ Ω2).

Let φ ∈ C∞(Rn × [0, T ]) be a smooth cut-off function satisfying

φ(x, t) =

{

1, (x, t) ∈ Rn\Nǫ(Ω1 ∩ Ω2) × [0, T ]

0, (x, t) ∈ Nǫ/2(Ω1 ∩ Ω2) × [0, T ]
.

Then, for

v(x, t) =











φ(x, t)u1(x, t), (x, t) ∈ Rn\Ω1 × [0, T ]

φ(x, t)u2(x, t), (x, t) ∈ Rn\Ω2 × [0, T ]

0, (x, t) ∈ Ω1 ∩ Ω2 × [0, T ]

it follows that v ∈ C∞
+ (Rn × [0, T ]) and that (∂t −Lx)v = f3 ∈ C∞

+ (Rn × [0, T ]) such
that

(Zf3)(x, T ) = u1(x, T ) = u2(x, T ), x /∈ Ω1 ∩ Ω2.

More importantly,

(Zf3)(x, T ) = u1(x, T ) = u2(x, T ), x ∈ M,

where f3 ∈ X0,0
f (Nǫ(Ω1 ∩ Ω2), T ).
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3. The Inverse Source Problem. We present our main result (theorem) con-
cerning the estimation of the time-varying carrier support in this section. The main
result presented here owes itself in part to Picard’s Theorem. This theorem essentially
provides a denumerable representation of a compact linear operator A between two
Hilbert spaces H1 and H2 in terms of the operator’s singular system, as well as a
means to assess whether a given element of the second space H2 is also an element of
the closure of the range of A. We take a moment to state the theorem and refer to
[1] for its proof and further commentary.

Theorem 3.1 (Picard). Let A : H1 → H2 be a compact linear operator from the
Hilbert space H1 into the Hilbert space H2 with singular system {λn, ϕn, ψn}∞n=1, i.e.

Aϕn = λnψn

and

A∗ψn = λnϕn,

and let 〈·, ·〉 denote the inner product on H2. Then, the equation Af = g is solvable
if and only if g ∈ N(A∗)⊥ and

∞
∑

n=1

|〈g, ψn〉|2
λ2

n

<∞.

Moreover, any f̃ of the form

f̃ =
∞
∑

n=1

〈g, ψn〉
λn

ϕn

solves Af̃ = g.
Given Picard’s theorem, and our previous range characterizations of the operator

Z|(M,Ω), presented in the previous section, we now have a test which can determine
whether the carrier support of the field u on M at time T is fully within some set of
interest Ω by means of testing the convergence of the sum

‖f̃‖2
Xσ

f (Ω,T ) =

∞
∑

n=1

∣

∣

∣

∣

∣

〈u(·, T )|M, ψ
(σ)
n (·, T )〉

λ
(σ)
n

∣

∣

∣

∣

∣

2

where

f̃(x, t) = (Z|∗(M,Ω)Z|(M,Ω))
−1Z|∗(M,Ω)u(·, T )|M, (x, t) ∈ Ω × [0, T ]

and where the functions ψ
(σ)
n (·, T ), ϕ

(σ)
n (·, T ) and λ

(σ)
n – which depend on the regularity

parameter σ = (σ1, σ2) and the sets of interest M and Ω – are defined through the
relationships

(

Z|∗(M,Ω)ψ
(σ)
n

)

(x, T ) = λ(σ)
n ϕ(σ)

n (x, t), 0 ≤ t ≤ T

and
(

Z|(M,Ω)ϕ
(σ)
n

)

(x, T ) = λ(σ)
n ψ(σ)

n (x, T ).
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If the sum does not converge, then we are able to conclude that the carrier support
of u(·, T )|M at time T is not fully within the test region Ω.

We formalize this statement with the main theorem of this section.
Theorem 3.2. (Carrier Support) Let f ∈ Xσ1,σ2

f (Ω, T ). Suppose further that
Ω ⊂ Rn is bounded with a smooth boundary and let Z|∗(M,Ω) denote the Hilbert adjoint

of Z|(M,Ω) such that Z|∗(M,Ω) : L2
+(M) → Xσ1,σ2

f (Ω, T ). Suppose further that

(

Z|(M,Ω)ϕ
(σ)
n

)

(x, T ) = λ(σ)
n ψ(σ)

n (x, T )

Then, for each fixed T

carr supp u(·, T )|M ⊂ Ω ⇔
∞
∑

n=1

∣

∣

∣

∣

∣

〈u(·, T )|M, ψ
(σ)
n (·, T )〉

λ
(σ)
n

∣

∣

∣

∣

∣

2

<∞.

Proof. Suppose carr supp u(·, T )|M ⊂ Ω. Then, by definition of the carrier sup-
port, there exists a source f ∈ Xσ1,σ2

f (Ω, T ) supported on a subset of Ω such that for

each T , (Z|(M,Ω)f)(x, T ) = u(·, T )|M where u(·, T )|M ∈ R
(

Z|Xσ1,σ2
f (Ω,T )

)

. Since Z
is a compact linear operator between the two Hilbert spaces exhibited in the previous
proposition, it admits the representation

Z =

∞
∑

n=1

λ(σ)
n ψ(σ)

n ⊗ ϕ(σ)
n

such that the action of Z on f may be written as

(Zf)(x, T ) =
∞
∑

n=1

λ(σ)
n 〈f, ϕ(σ)

n 〉ψ(σ)
n (x, T ), x ∈ M.

Since the left and right eigenfunctions, ψ
(σ)
n and ϕ

(σ)
n , satisfy

Z∗ψ(σ)
n = λ(σ)

n ϕ(σ)
n

we note that

〈f, ϕ(σ)
n 〉 =

∫ T

0

∫

Ω

f(x, τ)ϕ(σ)(x, τ)dxdτ

= 〈f,Z∗ψ(σ)
n /λ(σ)

n 〉
= 1/λ

(σ)
n 〈Zf, ψ(σ)

n 〉
= 1/λ

(σ)
n 〈u(·, T )|M, ψ(σ)

n (·, T )〉.

Bessel’s inequality states,

∞
∑

n=1

|〈f, ϕ(σ)
n 〉|2 ≤ ‖f‖2

X
σ1,σ2
f (Ω,T ) <∞.

Hence,

∞
∑

n=1

∣

∣

∣

∣

∣

〈u(·, T )|M, ψ
(σ)
n (·, T )〉

λ
(σ)
n

∣

∣

∣

∣

∣

2

<∞.
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Now, suppose u(·, T )|M ∈ R(Z|Xσ1,σ2
f (Ω,T )), where the closure of the latter space

is L2
+(M) which we established in proposition 2.1, and suppose the Picard sum

∞
∑

n=1

∣

∣

∣

∣

∣

〈u(·, T )|M, ψ
(σ)
n (·, T )〉

λ
(σ)
n

∣

∣

∣

∣

∣

2

converges. Let f be any source of the form

f(x, t) =

∞
∑

n=1

〈u(·, T )|M, ψ
(σ)
n (·, T )〉

λ
(σ)
n

ϕ(σ)
n (x, t), (x, t) ∈ Ω × [0, T ].

Then, since each ϕ
(σ)
n is supported on Ω, any such source will have similar such

support. Also, its nontrivial image, a fact from proposition 2.3, under Z is in L2
+(M)

for each T . Finally,

‖Zf‖2
L2

+(M) =
∞
∑

n=1

|〈u(·, T )|M, ψ(σ)
n (·, T )〉|2 ≤ ‖u(·, T )‖2

L2
+(M) <∞.

Hence, carr supp u(·, T )|M ⊂ Ω.

Our main result provides us with a reconstruction algorithm which can determine
the time-dependent carrier support of the field u|M. We describe this algorithm in
the form of the following

Corollary 3.3. Let Ω be an open bounded convex subset of Rn, and {λ(σ)
n , ψ

(σ)
n , ϕ

(σ)
n }

be the singular system for Z|(M,Ω). Then,

carr supp u(·, T )|M =
⋂

Ω such that

∞
∑

n=1

∣

∣

∣

∣

∣

〈u(·, T )|M, ψ
(σ)
n (·, T )〉

λ
(σ)
n

∣

∣

∣

∣

∣

2

<∞.

Proof. Let Ω be an open bounded convex set and suppose that the infinite se-
ries in corollary (3.3) converges. Then, there exists a source g(Ω), depending on Ω,
in Xσ1,σ2

f (Ω, T ) such that Z|(M,Ω)g
(Ω) = u(·, T )|M. Taking the intersection of the

supports of all such g’s then yields

⋂

Ω =
⋂

Z|(M,Ω)g(Ω)=u|M

supp ch g(Ω) = carr supp u(·, T )|M.

This summability test offers a theoretical and computational basis for the de-
termination and ultimate reconstruction of the carrier support support of u(·, T )|M.
Numerically speaking, however, there is some issue of how to actually sum the infinite
series. The fact that the operator Z|(M,Ω) is compact and smoothing tells us that
zero is either an eigenvalue or a point of accumulation. It turns out that zero is a

point of accumulation and so the singular values λ
(σ)
n rapidly converge to zero, thereby

creating a computational instability problem if we seek to sum the series numerically.
Hence, either the summability test needs to be regularized in some manner or we need
to pursue another approach which is linked to the infinite series.
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4. Numerical Examples. We now consider two numerical examples which
demonstrate the ability of the proposed theorem to locate the positions of two lo-
calized sources. In the first case, we consider the delta-function impulse source
f(x, t) = δp(x)δ0(t) ∈ E ′(R) ⊗ E ′(R). Here, we study the two problems of having
knowledge of the scalar diffusion field away from the source with a nontrivial convec-
tion field flowing in the downstream sense, i.e., the measurement set is say to the left
of the source, while the flow field moves from the left to the right. We examine this
problem in the two cases where in the first, we have values of u at some fixed time
larger than zero sampled uniformly on our measurement interval, and second, where
these values are measured in a nonuniform fashion. In short, in both situations, the
minimum of the logarithm of the truncated moving Picard sum is evidently observable
and location of the impulse point source is readily accomplished.

In the second case, we study another convective problem, specifically in two-
dimensional space R2. In this case we allow the source to be a sustained one in time
– once it has “turned on” – and allow it to move through space along a T ∗-period
track or orbit γ(t), of lifetime T ∗, i.e.,

f(x, t) = δγ(t)(x)(H0(t) −HT∗(t)).

For this problem we only present the case of having uniform measurements on M, now
in R2, yet we are able to clearly demonstrate the instantaneous tracking, or location,
of the localized source may be done in a very robust fashion, as evidenced by the
comparison of the exhibited true and reconstructed source trajectories.

For simplicity in the numerical generation of the data and the numerical imple-
mentation of the main results of this article we assume the coefficients in parabolic
operator Lx take the form

a = I on Rn, n = 1, 2

b =

{

−1, on R1

−(1, 0), on R2

c = 0.

This means our governing equations of interest in the one and two-dimensional cases
are

(

∂t + ∂x − ∂2
x

)

u(x, t) = f(x, t), (x, t) ∈ R × R+

and
(

∂t + ∂x − ∂2
x − ∂2

y

)

u(x, y, t) = f(x, y, t), (x, y, t) ∈ R × R+ × R+.

Remark 3. In the following numerical experiments the variable c will now, in-
stead, denote a coordinate value in either R or R2, depending on whether we are
addressing the inverse problem on the real line, or on the real plane, which will be ev-
idently clear from the associated context. This coordinate value represents the center,
and hence the preferable letter c, of certain test domains of interest (Ωc), which will
be moved around the larger space of interest and will be centered at the various points
c to follow.

Location, and tracking of the moving source, is accomplished by covering the
totality of the search space of interest Ωs with candidate test domains of the forms:

Ω(1,2)
c = Ω

(1,2)
0 + {cj}
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where in R ∋ cj we have

Ω
(1)
0 = [0, 1/10]

and in R2 ∋ c we define

Ω
(2)
0 = [0, 1/10]× [0, 1/10]

and seeking to minimize the objective function

J(Ωc) = ‖Z|†(M,Ωc)
u(·, T )|M‖2.

Here, † denotes the pseudo-inverse.
In summary, when the test set Ωc fully contains the carrier support of the source,

then the objective function should take on small values; while contrarily, when such a
test domain does not fully contain the source it should be singular. We acknowledge
the phrasing, “small values” is indeed rather ambiguous; however, in the numerical
examples to follow, we observe a global minimum value of the objective function when
the test domain is exactly centered on the support of the true source. Furthermore,
we add that the test domain position centers are taken as

R ∋ cj = {−10 + j/20}, j = 0, 1, 2, · · · , 400

and

R2 ∋ cj = (−2 + j/20, 0 + j/20), j = 0, 1, 2, · · · , 80.

We end this section which discusses the overall strategy pursued in the generation
of the numerical evaluation of the results presented in this article with a few words on
the simulated data used in this evaluation. In summary, we discretize the standard
action of Zf and employ a Newton-Cotes-type numerical integration scheme to gener-
ate its approximation on discretely sampled points of M. More importantly, so as to
not perpetrate and inverse crime, we corrupt these approximations with considerable
white noise, in the levels of approximately 5%, 10% and 30%.

4.1. Locating a Stationary Impulse Source in R. In this section scalar
field is generated by the discretization scheme (via the standard rectangle rule) of the
integral

u(x, T ) =

∫ T

0

∫

R

e−
|x−(T−τ)−y|2

4(T−τ)

√

4π(T − τ)
δp(y)δ0(τ)dydτ =

1√
4πT

∫

R

e−
|x−T−y|2

4T δp(y)dy (4.1)

and again subsequently corrupted by various levels of white noise to avoid committing
the standard inverse crime. We examine the data taken over the discretely sampled
uniform domain,

M1 = {−1.0,−0.8,−0.6,−0.4,−0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0} ⊂ R

and the nonuniform domain

M2 = {−0.14,−0.178,−.21,−.23,−.49,−0.8,−0.01, 0.62, 0.81, 0.90, 1.0} ⊂ R.

We examine three instances of noise-corrupted data, in the amounts 10, 20 and
30 dB – which amounts to 32.0%, 10.0%, and 3.2% relative signal to noise ratio. For
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Fig. 4.1. The exact and measured (noise corrupted) diffusion fields and the norm of the asso-
ciated truncated Picard test series on a uniform measurement grid.

relative time T = 10 after impulse release, for the discrete samplings taken on M1

and M2, we observe that the running truncated Picard series are each minimized
at, or very near, to the point of the impulse release, which is p = 5.0 in all cases.
This observation is very helpful in establishing the fact that the discrete samplings
taken on general sets of observation M are not restricted to such things as equally
spaced gridded points. Rather, any collection of discrete points which are coplanar
in Rn will suffice. Moreover, numerical investigations have shown that larger random
samplings yield better conditioned systems than for the analogous case of equally
separated points, when the number of samplings is the same in both instances. For
commercial purposes, this is both necessary and highly advantageous. Figures 4.1
and 4.2 demonstrate the efficacy of locating the localized source, again at p = 5,
when we have uniform measurements on M1 and nonuniform ones on M2.

4.2. Locating a Sustained Moving Source in R × R+ × R+. As in the
previous subsection, we begin with the description of the integral which we discretize,
and corrupt with ample random noise, that provides our simulated data. Here, we
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Fig. 4.2. The exact and measured (noise corrupted) diffusion fields and the norm of the asso-
ciated truncated Picard test series on a nonuniform (random) measurement grid.

present the numerical method used to construct the numerical solution to the two-
dimensional forward problem. We begin by considering the two-dimensional heat
equation with a time dependent source g((x, y) − γ(t))s(t) located at (xs(t), ys(t)) =
γ(t) and given by

(

∂t + ∂x − ∂2
x − ∂2

y

)

u(x, y, t) = g((x, y) − γ(t))s(t).

Following [2] the fundamental solution for the above operator (defined over all space)
is given by

Z(x− ξ1, y − ξ2, t− τ) =
1

4π(t− τ)
e−

((x−ξ1)−(t−τ)+(y−ξ2))2

4(t−τ) .

In our two dimensional simulation problem we are interested in solving the inverse
source problem for the convective diffusion equation on the half space

Π+ = [−∞,∞] × [0,∞],
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where we assume there is no flux of the field over the boundary {y = 0}, i.e.,
∂yu(x, 0, t) = 0 for all x and t. This problem then resembles (in one less dimen-
sion) the problem of some form of elevated source release in say a large, but local
neighborhood of the atmosphere and its contact with the ground. Then, in this case,
using the method of images, see [8, 2], we form the Green’s function

Z̃(x− ξ1, y − ξ2, t− τ) = Z(x− ξ1, y − ξ2, t− τ) + Z(x− ξ1, y + ξ2, t− τ)

which satisfies our boundary condition.
To solve the diffusion equation with a time and spatially dependent source term

one can integrate it against such a Green’s function to obtain

u(x, y, T ) =

∫ T

0

∫

Rξ1

∫

Rξ2

Z̃(x − ξ1, y − ξ2, T − τ)f(ξ1, ξ2, τ)dξ1dξ2dτ. (4.2)

Due to the the weak singularity at τ = T , the numerical integration requires
special treatment. To perform the integration we used a member of the semi-open
quadrature rules [18] that do not explicitly evaluate their integrand at the limit of the
integration range where the singularity exists. The explicit scheme selected for this
investigation is given by (for an integrand f(x) that is singular at the left endpoint
x1)

∫ xN

x1

f(x)dx = h

[

23

12
f2 +

7

12
f3 + f4 + f5 + . . .+ fN−2 +

13

12
fN−1 +

5

12
fN

]

. (4.3)

Note that substituting the expression v = T − τ in equation 4.2 results in the singular
limit at the left hand endpoint, to which equation 4.3 can be applied.

We employed the source moving along the figure eight-like lemniscate over one
period (of 10 units), which then goes extinct, i.e., in this case

f(x, y, t) = δ(cos 2πt
10 ,sin 4πt

10 )(x, y)(H0(t) −H10(t)), (x, y) ∈ Π+.

Moreover, our data was then sampled on the grid of points

M = {0, 1/2, 1}× {0, 1/2, 1}
at snapshots in time corresponding to every 1/10 of unitless time. We demonstrate
the outcome of this numerical experiment in figures 4.3, 4.4, 4.5 and 4.6. We use a
signal-to-noise level of 25 dB, which again corresponds to 5.6% relative error between
the signal strength and that of the additive white noise. The truncation valueN which
defines the dimension of the singular system used in the truncated Picard series test

is chosen so that the singular values obey λ
(0,0)
n < 10−4 for each n > N , that is

our TSVD tolerance is 0.0001. We used this value as we found the singular values

λ
(0,0)
n rapidly approach zero after this value. Hence, our method of regularization

is based on the philosophy of principle component analysis. That is we found the

tolerance criterion λ
(0,0)
n ≥ 10−4 yielded the principle (dominant) components of the

(pseudo-inverted) operator in question.
Figure 4.3 shows the entire ensemble of the reconstructed truncated Picard series

over all the test domains at time T = 1.0. The colored surface is the value of the
logarithm of the truncated series

‖f̃j‖X0
f (Ω,T ) =





N
∑

n=1

∣

∣

∣

∣

∣

〈u(·, T )|M, ψ
(0)
n,j(·, T )〉

λ
(0)
n,j

∣

∣

∣

∣

∣

2




1/2

.



IDENTIFICATION OF A SOURCE IN A PARABOLIC PDE 19

Figure 4.4 shows the same of objective-type function as the previous one in Fig-
ure 4.3, only here we look from beneath to better observe the minimum located near
the coordinate pair (2π/10, 4π/10).

After obtaining the global minimum of the objective function which locates the
(potentially mobile) source, we then use smaller moving, time-adaptive test domains
of interest to locate the source, knowing with 100% certainty that source and its carrier
support reside with each such test domain. Using the most previous estimates of the
coordinates of the autonomous source, (x̂j−1, ŷj−1), this adaptive search domain is
formed as

Ωj = [x̂j−1 − 1/4, x̂j−1 + 1/4]× [ŷj−1 − 1/4, ŷj−1 + 1/4] , j ≥ 1.

Clearly, we do this to make the computations as efficient as possible, and avoid un-
necessary searching. This idea and its results are presented in Figure 4.5 which shows
the localized inversions at the time snapshots T = 2.0, T = 4.0, T = 6.0, T = 8.0,
T = 10.0 and T = 12.0.

Finally, in Figure 4.6 we show the true track of the source, and its locations at
the discrete snapshots in time, along with the estimated or reconstructed track and
it’s instantaneous estimated positions. We remark that at the time T = 10.0, when
the source turns-off, i.e., s(10) = 0, the carrier support’s location remains constant,
up to the noise and ill-posedness of the problem. That is, in the event of perfect data
and a very well conditioned linear system, the source estimate would remain fixed at
the point (1, 2).
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Fig. 4.3. Numerical truncated Picard tests at the time T = 1 for the localized two-dimensional
moving source over the fully tessellated domain.

5. Summary and Conclusions. We have demonstrated that a simple knowl-
edge of the instantaneous scalar field u on any bounded open set M located away from
the (possibly time-varying) support of a source f is sufficient to estimate a nontrivial
subset of the actual convex hull of the support of the source which we have called
the carrier support of u|M. Additionally, we have provided and examined a viable
numerical implementation of this result which can estimate, to essentially arbitrary
precision, the trajectory of the carrier support over time, and hence track the mov-
ing source in real-time, without a priori assumptions on the regularity of the source.
Moreover, we have shown that non-uniform sampling of the bounded and open mea-
surement set M works as effectively as a uniform one. This result is important as
it suggests that a wide collection of point samples distributed over a large domain of
interest constitutes a robust methodology to locate and track sources of interest in a
variety of applied problems, such as complex convective urban environments or large
(aquatic) reservoir-like problems. In each of these, the robust and timely location
of the effluent source is critical in nature, and may be accomplished with the few,



IDENTIFICATION OF A SOURCE IN A PARABOLIC PDE 21

−2

−1

0

1

2

0

1

2

3

4

0

2

4

6

8

x

T =  1.0

y

lo
g

1
0
 |
|Z

+
 u

| M
 |
|2

1

2

3

4

5

6

7

Fig. 4.4. Inverted view of the former numerical truncated Picard tests at the time T = 1 for
the localized two-dimensional moving source over the fully tessellated domain.

sparse, and possibly non-uniformly sampled data assumed known in the analysis in
this article.

In brief we mention that the concept of the carrier support does not provide us
with a direct method which allows us to estimate the source strength as a function of
time, and that this is certainly a significant problem of interest. In some simple cases,
such as for constant coefficients of Lx, it may well be the case that by simply examining
the local behavior of the objective function near the source, and observing it diminish
in size over time, we may conclude that the source is no longer emitting into the system
of interest and has become extinct. However, when the coefficients of Lx become more
complex, such a simple observation may not persist. In such cases we propose an
additional (forthcoming) technique which can estimate the strength of s over the time
interval of measurements, [0, T ] which is based on a combination of results provided
here and some analysis of the Laplace transform of the governing equations of our main
problem. Additionally, the current framework developed here only accommodates
the location and tracking of a source having but one component. The extension of
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Fig. 4.5. Localized numerical truncated Picard tests at the time snapshots: T = 2.0, T = 4.0,
T = 6.0, T = 8.0, T = 10.0, and T = 12.0.

the result to the problem of sources having multiple disjoint components is of much
interest and is underway at the time of this writing.

Clearly, many future paths of work exists and warrant pursuit. Further among
them, a sensitivity analysis of how this method performs when the coefficients are only
known to within some specified tolerance of their true values. Additional work consists
of treating the problem in a stochastic setting, where these coefficients are not known
instaneously as we have assumed throughout this article; rather they are known to
possess certain distributional moments and belong to certain distributional families.
Again, the possibilities for interesting and value future work are many indeed.
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Fig. 4.6. The discretely sampled true two-dimensional source track and the reconstructed (es-
timated) source track for the one-period sustained source.
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