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Abstract— We have developed and tested a new algorithm,
which we call the “wave filter,” that solves the nonlinear filtering
problem with discrete-time measurements by solving the Fokker–
Planck equation for the conditional probability density function
using a split-step technique. The wave filter uses fast convolution
to compute the effect of process noise at discrete times. Between
measurements, the conditional density is propagated by solving
a system of ordinary differential equations. Measurement update
is carried out via Bayes’ rule. We propose the “adjoint method”
to reduce the computational complexity of the algorithm by
adaptively varying the mesh size.

I. I NTRODUCTION

Nonlinear filtering algorithms can be divided into three
broad categories. First, there are those filters that compute the
sufficient statistics characterizing the conditional probability
density function. These filters effectively reduce the problem
of solving a partial differential equation (PDE) to that of
solving a series of ordinary differential equations (ODEs).
This class of filters includes the extended and unscented
Kalman filters. Another major class of filters consists of those
which approximate the conditional density using Monte Carlo
sampling techniques. The particle filter is the quintessence
of this class of filters. Finally, there are those filters that
compute the conditional density exactly by explicitly solving
the Fokker–Planck equation (see e.g. [1]). Note that in general,
the computational complexity of both Monte Carlo and exact
techniques increases exponentially with the dimension of the
state vector, while the computational complexity of filters
solving for the sufficient statistics varies polynomially with
the dimension of the state vector (see e.g. [2] and [3]).

In this paper, we present a new algorithm, which we refer
to as the “wave filter1”, that solves for the conditional density
exactly and hence falls under the third category of nonlinear
filters. Our algorithm relies on using a “split-step” technique
for solving the Fokker–Planck equation.

We begin by reviewing the nonlinear filtering problem in
section II. The split-step solution of the Fokker–Planck equa-
tion along with a formulation of the wave filtering algorithm
is presented in section III. We give two numerical examples in
section IV demonstrating the performance of the wave filter.
Finally, in section V, we discuss the possibility of using the

1The term “wave filter” is more than a mere wordplay and is in fact
reminiscent of the wave-particle duality in quantum mechanics.

“adjoint method” to reduce the computational complexity of
the wave filter.

II. PROBLEM STATEMENT

In a nutshell, the filtering problem consists of recursively
estimating the state of an uncertain variable from noisy mea-
surements. The dynamic behavior of the state is described by
the system dynamic model [4]:

dxt = ft(xt) + dwt, (1)

where the process noise vectorwt is a zero-mean Gaussian
white noise process with spectral density matrixQt. The
mapping of the state space at time indexk to the discrete-time
measurement space is given by the measurement model [4]:

zk = hk(xk) + vk, (2)

where the measurement noise vectorvk is a zero-mean Gaus-
sian white noise process with covarianceRk. The dimension
of the measurement vector is smaller than or equal to the
dimension of the state vector. The spectral densityQt and
covarianceRk of the process and measurement noise vectors
are known a-priori and together with the system and measure-
ment functions,ft and hk, respectively, serve as “inputs” to
the filtering algorithm.

What we seek is the conditional probability density function,
p(xtk

|Zk), of the state variable at timetk given the sequence
of measurementsZk = {z1, . . . , zk}. Between measurements,
the evolution of the conditional density is prescribed by the
Fokker–Planck equation [5]:
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with initial condition p(xtk−1 |Zk−1). We denote the solution
asp(xtk

|Zk−1). This constitutes the “propagation” step of the
solution. At the time of measurement arrival, we update the
conditional density using Bayes’ rule:

p(xtk
|Zk) =

p(zk|xtk
)p(xtk

|Zk−1)
p(zk|Zk−1)

(4)

wherep(zk|xtk
) is the likelihood function of the measurement

zk. In the next section, we consider a “split-step” technique
for solving the Fokker–Planck equation (3).



III. SOLUTION OF THE FOKKER–PLANCK EQUATION

As a foray into solving the Fokker–Planck equation, we
examine two limiting cases. First, we consider the case of
random walk dynamics with time-invariant process noise:

ft = 0 and Qt = Q.

The Fokker–Planck equation for this case reduces to
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which we recognize as the diffusion equation withQ inter-
preted as the diffusion tensor. Taking the Fourier transform
with respect to the state vectorxt, we obtain

dp†

dt
= −1

2
ξT

t Qξtp
†, (6)

where p† denotes the Fourier transform of the conditional
density, andξt corresponds to the Fourier “wavenumber”
variable. Equation (6) is a simple ODE that can be solved
in closed form. Taking the inverse Fourier transform of the
result, we arrive at a solution for the diffusion equation that can
be regarded as the smeared version of the initial density. We
conclude that the diffusion equation (5) can be solved using
efficient algorithms for computing the convolution integral
such as the fast Fourier transform (FFT).

Next, we consider the case when there is no process noise:

Qt = 0.

For this case, the Fokker–Planck equation reduces to a con-
vection equation:
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whereft can be interpreted as the drift vector, while the left-
hand side of the equation denotes a substantive derivative [6].
The PDE (7) can in turn be cast into an equivalent system of
ODEs:
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We solve equation (8) by first forming a grid for the solution
domain. Subsequently, the state vector valid at a particular grid
point and the corresponding conditional density are propagated
simultaneously using a standard ODE solver such as the 4th-
order Runge–Kutta integrator [7].

The results we obtain for these two limiting cases can be
combined to solve the Fokker–Planck equation for the general
case. This is achieved by mandating the process noise spectral
density matrix to be discrete-time; that is, we consider the case
when process noise is “injected” into the system at discrete
time intervals coinciding with times of measurement. We note
that unlike in physics, process noise is an engineeringdesign
parameter. In physics, we have no control over the behavior
of the diffusion tensor. Thus, we let

Qt =
∑

k

Qkδ(t− tk), (9)

whereδ(t − tk) is the Dirac delta function. Hence, immedi-
ately after the measurement update step, the Fokker–Planck
equation reduces to the diffusion equation (5), while between
measurements, it reduces to the convection equation (7). We
refer to this method for solving the Fokker–Planck equation
as the “split-step” technique. Finally, we can always consider
a diagonal process noise covariance matrix via an appropriate
coordinate transformation and thereby reducing the computa-
tional complexity of solving the diffusion equation (5) even
further.

In summary, we solve the nonlinear filtering problem with
discrete-time measurements in three steps: (1) smear the
conditional density valid at time indexk− 1 by convolving it
with a Gaussian function with covarianceQk−1; (2) propagate
the system of ODEs (8) from time indexk − 1 to time index
k for each grid point of the solution domain; and (3) update
the conditional density with the measurement received at time
index k using Bayes’ rule (4). We refer to this algorithm as
the “wave filter.”

IV. N UMERICAL EXAMPLES

A. Spinning Disk

In this and the next section, we consider two simple two-
dimensional examples demonstrating the performance of the
wave filter with measurement updates. First, we consider the
so called “spinning disk” problem [8]. We imagine a flat disk
spinning about an axis. An observer observing the spinning
disk from an edge measures a feature of the disk that is
a nonlinear function of some “metric” property of the disk.
Specifically, we consider the state of the disk to be completely
specified by the two-dimensional vector:

xt =
[
θt θ̇t

]T
, (10)

whereθt is the angle of a point on the edge of the disk, while
θ̇ is the spin rate of the disk. We consider a linear system
dynamic model corresponding to a simple “constant-velocity”
model:

ft(xt) =
[
θ̇ 0

]T
. (11)

On the other hand, for the measurement model, we consider
the nonlinear model:

hk = cos(θtk
). (12)

Since cosine is an even function, this measurement model
gives rise to an ambiguity with regards to the sign of the spin
rate. In other words, the posterior density function is expected
to be bi-modal.

Figure 1 summarizes our simulation results. Numerical
values for the simulation parameters are listed in Table I.
Figure 1 shows plots of the conditional density as a function of
the two states, angle and spin rate. The first simulation “frame”
shown in Figure 1a corresponds to the initial density prior to
the acquisition of the measurement. The density is assumed to
be uniform. As shown in Figure 1b, the density shows its bi-
modal characteristic immediately after the first measurement
update. Here, the estimation of spin rate remains poor. After
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TABLE I

SPINNING DISK EXAMPLE SIMULATION PARAMETERS

PARAMETERS VALUE DIMENSION

Number of grid points per dimension 64 N/A
True initial angle 65 deg
True initial spin rate 2 deg· s−1

Angle process noise variance 0 deg2 · s−1

Spin rate process noise variance 0.1 deg2 · s−3

Measurement error std. dev. 0.25 N/A
Sampling time 0.5 s

a few iterations, the estimation of the spin rate improves (Fig-
ure 1c). However, the sign of the spin rate remains ambiguous.
The last simulation frame shown in Figure 1d demonstrates
the convergence of the algorithm. We note how the spacing of
the mesh changes over time. Our numerical integration of the
convection equation implements the notion of the substantive
derivative by explicitly propagating each mesh point according
to the underlying system dynamic model. Here, the system
dynamic model is linear. This is reflected in the sheared
appearance of the mesh after a few iterations of the algorithm.

B. Tracking a Falling Object on Reentry

In this section, we consider a simple example with a
nonlinear dynamic model and a linear measurement model
(in a way the mirror image of the problem we considered in
section IV-A). We consider the problem of tracking a falling
object on reentry from beyond the Earth’s atmosphere. The
state vector is given by

xt =
[
rt ṙt

]T
, (13)

where rt and ṙt refer to the range and range rate from a
sensor immediately below the falling object on a vertical
line. A more general scenario would consist of observing the
object at an angle and would therefore have the complete
position and velocity vectors as the components of the state
vector. Furthermore, due to the atmospheric drag, the ballistic
coefficient of the object and the air density would have to be
known in order to model the drag force in the direction op-
posite to the object’s velocity vector in addition to the Earth’s
gravitational force. In real applications, the ballistic coefficient
is modelled as part of the state since it is in general unknown.
For air density, a model is usually assumed with various
parameters which depend on the physical characteristics of the
local atmosphere. These parameters vary randomly with sensor
location and are dependent on meteorological factors. Here,
we assume a simple model for the air density, and we assume
that the ballistic coefficient of the falling object is known
exactly. This scenario is not entirely unrealistic since one can
envisage an experiment consisting of dropping say a bullet
whose ballistic coefficient is specified by the manufacturer
from a high altitude. Here, we follow the reentry example
given in section 5.2 of [9].
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Fig. 1. Unnormalized conditional density for the spinning disk problem:
(a) initial uniform density with uniform mesh, (b) density after one mea-
surement update, (c) density after twenty-two measurement updates, and
(d) density after forty measurement updates. The true state is shown as the
cross section of the two thick lines. cross-section of the two thick lines.
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TABLE II

REENTRY EXAMPLE SIMULATION PARAMETERS

PARAMETERS VALUE DIMENSION

Number of grid points per dimension 32 N/A
True initial range 6.1 km
True initial range rate 3048 m· s−1

Range process noise variance 0 m2 · s−1

Range rate process noise variance 0.01 m2 · s−3

Measurement error std. dev. 1 km
Sampling time 1 s

The system dynamic model is given by

ft(xt) =

[
−ṙt

−ρ(rt)gṙ2
t

2β + g

]
(14)

whereg = 9.81 m · s−2 is the gravitational acceleration, and
β = 19161 kg ·m−1 · s−2 is the ballistic coefficient of the
falling object, which, for simplicity we are assuming is known
exactly. The air density is given by

ρ(rt) = γe−ηrt (15)

whereγ = 1.754 kg ·m−3 and η = 1.49× 10−4 m−1. From
equation (14), it can be shown that the trace of the system
Jacobian matrix is given by

tr
(

∂ft
∂xt

)
=

∂f1,t

∂rt
+

∂f2,t

∂ṙt
= −ρ(rt)gṙt

β
(16)

It follows that the solution of the convection equation for
this problem can be obtained from the following system of
nonlinear ODEs:

d

dt

[
xt

p

]
=

[
ft(xt)

ρ(rt)gṙtp
β

]
, (17)

which we solve numerically using a standard ODE solver such
as the 4th-order Runge–Kutta integrator. Finally, the linear
measurement model is given by

hk = rtk
. (18)

The parameters of the simulation are listed in Table II. The
results are shown in Figure 2. As in the previous example,
it is evident from the Figures that the spacing of the mesh
changes over time. Again this is a direct consequence of our
numerical integration of the convection equation. Note that for
this example, the nonlinear system dynamic model results in
a highly deformed mesh distribution after a few iterations of
the algorithm.

V. A DAPTIVE MESHING

The algorithm presented in section III suffers from the
so called curse of dimensionality; that is, the computational
complexity of solving the Fokker–Planck equation increases
exponentially with the dimension of the state vector [3]. As
can be seen in Figure 1, the value of the conditional density
is negligible for many grid points. It is expected that by
adaptively changing the mesh size over the solution domain,
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Fig. 2. Unnormalized conditional density for the reentry problem: (a) initial
uniform density with uniform mesh, (b) density after one measurement update,
(c) density after thirteen measurement updates, and (d) density after twenty
measurement updates. The true state is shown as the cross section of the two
thick lines. cross-section of the two thick lines.
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it is possible to reduce the computational complexity of the
algorithm by concentrating on regions of high probability
density. Many useful adaptive techniques have been developed
for the numerical solution of PDEs (see e.g. [10]). One
possible technique suggested by Daum and Krichman [11] is
the adjoint method [12].

We note that for a majority of applications, instead of the
conditional density, we are mainly interested in the solution
of expectation integrals of the form:

J = 〈ψ|p〉 =
∫

ψ(x)p(x|Zk) dx. (19)

The adjoint method seeks the solution that minimizes the error
in estimating the functionalJ . If we regard the differential
equation (written in operator notation)

Lp = φ (20)

as the “prime” problem, then we can define a “dual” problem
described by

L∗q = ψ, (21)

whereL∗ is the adjoint of theL operator. From the definition
of the adjoint operator, it follows that the expectation inte-
gral (19) can be equivalently expressed in terms ofq:

J = 〈ψ|p〉 = 〈L∗q|p〉 = 〈q|Lp〉 = 〈q|φ〉 . (22)

It can be shown that the errorδJ in estimating the expectation
integral (19) satisfies the bound [13]:

‖δJ‖ ≤
∥∥L−1

∥∥ ‖Lph − φ‖ ‖L∗qh − ψ‖ , (23)

where ph and qh refer to the approximate solutions of (20)
and (21), respectively. By adaptively changing the mesh size
such that the error bound (23) is minimized, it can be shown
that the computational complexity of solving the Fokker–
Planck equation can be significantly reduced [12]. We defer
to a future study the application of the adjoint method to the
wave filter.

VI. SUMMARY AND CONCLUSION

We have shown that the Fokker–Planck equation for the
nonlinear filtering problem with discrete-time measurements
can be solved efficiently using a split-step technique. However,
the computational complexity of the algorithm still increases
exponentially with the dimension of the state vector. We
recommend the adjoint method discussed in section V as
a means to adaptively changing the mesh size and thereby
reducing the computational complexity of the algorithm.
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