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An Improved Method for Detection of Stationary
Targets in High Clutter SAR Images

John Weatherwax

Abstract— In a series of papers [1]-[6] L. Novak and others
at MIT Lincoln Laboratory developed an Automatic Target
Recognition (ATR) system for identifying stationary ground
targets appearing in Synthetic Aperture Array (SAR) RADAR
images. The first step of that processing involves object detection
and is done with an image filtering operation aimed at estimating
statistics of the clutter surrounding each pixel within the SAR
image. The original detector proposed by Novak et. al. works very
well, when targets are separated by a reasonable distance or the
background clutter returns are not too severe. In this paper, we
present an alternative detector algorithm that has better detection
performance with densely spaced targets or targets in high
clutter environments. Following a description of our algorithm
we comment on efficient computational implementations, and
finally present comparison studies showing the stated improved
performance.

I. INTRODUCTION

N a series of papers [1]-[6] L. Novak and others at

MIT Lincoln Laboratory developed an Automatic Target
Recognition (ATR) system for identifying stationary ground
targets appearing in Synthetic Aperture Array (SAR) RADAR
images. It was envisioned that this software would enable very
large regions of terrain to be searched automatically. Here we
briefly present a summary of enough of the signal processing
chain to enable the reader to understand the improvements
developed in this paper. Please see the series of papers written
by Novak and others for a more complete characterization.

The ATR signal processing chain developed by Novak
and others is as follows, see figure 1 for a flow diagram.
A SAR images is collected and passed into the system.
A two parameter CFAR detection algorithm [7] is used to
locate pixels that are significantly bright compared to their
surrounding clutter. This CFAR image is thresholded and
each connected component in the resulting binary image is
considered a potential target. For each potential target a few
simple features are calculated and “obvious” non-targets are
mitigated (discarded). Obvious non-targets include ones that
are much too large or small to represent a typical target. For
the potential targets that remain, a set of nine features is
calculated. This feature vector is compared with known clutter
and target mean feature vectors using a Gaussian quadratic
classifier to further eliminate clutter detections. Finally, any
remaining detections are compared to template targets from
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Fig. 1. High level overview of the SAR image processing proposed in [4].
As this paper is concerned only with the processing that happens in the
box labeled “2 Parameter CFAR”, only that calculation will be discussed in
any detail. Please see the original articles for more information on the other
components.

a target image database to further classify each detection by
target type. A nice summary of much of Novak’s work in this
area is given in the recent book [8].

An intricate and important part of the entire processing
chain just described is the CFAR detector, represented in
figure 1 as the “2 Parameter CFAR” box. In this paper,
we will discuss a CFAR detector algorithm that gives better
performance for densely spaced targets and for targets in
heavy clutter regions than that originally proposed by Novak
et. al. Towards this end, the remainder of this paper is
as follows. In section Il we describe the original Novak
CFAR detector and a median CFAR detector developed to
overcome the difficulties previously mentioned. To the authors
knowledge this median CFAR approach is novel and is one
of the contribution from this paper. Next, in section Il we
describe novel modifications to each CFAR algorithm that
improve computational efficiency without sacrificing detection
performance. In section IV, we demonstrate the improved
performance on some sample Moving and Stationary Target
Acquisition and Recognition (MSTAR) SAR images. Finally,
in section V we conclude.

Il. CFAR DESCRIPTIONS

In this section we first review the baseline CFAR algorithm
presented by Novak in [1] and then present a modified
CFAR algorithm based on the original version but using order
statistics to compute clutter statistics.
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Fig. 2. The original CFAR stencil [1]. The border pixels are chosen to be
far enough from the center so that a target of interest will not intersect them.
The highlighted pixel at the center is the pixel that the clutter estimate is
computed for.

A complex SAR image (C; ;) is first transformed into a
log-detection image (D; ;) with elements defined by

D; ; =10 Log10(C;,;C7 ;) , 1)

where the star represents complex conjugation. This operation
is performed for every pixel in the input SAR image, or 1 <
i1 <Mand1l<j<N,foraSAR image of dimension M xN.
This log detection image D is then further processed with a
moving average stencil. For each log-detection pixel D; ; in
the image, the algorithm consists of computing estimates of the
local-clutter statistics from pixels around the pixel of interest.
The local clutter statistics required at pixel location (i, j) are
the mean jic and the standard deviation 6 of the shaded
border pixels in figure 2. The formulas for these estimates are
obtained using standard statistical formulas for the mean and
standard deviation [9]. For the mean this equation is

! Z D ;, )

N .
Stencil ;. eStencil

fic =
while for the standard deviation this equation is

! > (Dij— i) 3)

N .
Stencil ;& eStencil

68 =

Here the sums are taken over each (4, ) pixel that is a member
of the stencil and Nggencir i the number of pixels in the CFAR
stencil. A typical stencil used for this filtering is shown in
figure 2. The size is chosen large enough so that a target of
interest, centered at pixel (4, j) will not intersect its own clutter
ring. In addition the clutter statistics fic and 6¢ are computed
for every pixel in the input image®.

With these two definitions the CFAR image at pixel (i, j)
is computed using the following equation
D;; —jc

CFAR;; =
ac

(4)

1They are not be written with (4, §) indices to avoid the resulting cumber-
some notation.

This equation then physically represents the number of stan-
dard deviations each pixel has from a locally computed clutter
background. A true target located at (4,;) should be much
brighter than the surrounding clutter and have correspondingly
large values for CFAR,; ;. To apply this process to every pixel
in the SAR image boundary condition specification will be
necessary. A great number of different methods can be used
for this purpose. As the exact method used is not important
for this paper this issue will not be discussed further.

Were the full ATR processing described in figure 1 to
continue, this CFAR image would now be thresholded and
the connected components that remain in the resulting binary
image represent the location of potential targets. For this
paper, we will only be concerned with the production of a
CFAR image and it will not be necessary to discuss further
processing.

During development, it was noted that over bodies of water
or regions of very uniform clutter where 6o <« 1, the
following simple modification to equation 4 resulted in an
algorithm that performed better with respect to false alarms
M ) (5)
maX(JC 7JF100r)
Here orioor IS an empirically derived constant.

The CFAR algorithm given by equations 2, 3, and 5 suffers
from the problem that when targets are closely spaced, so
that they intersect each others clutter stencils, the neighboring
targets RADAR return will incorrectly corrupt the statistical
features computed in equations 2 and 3. This corruption will
result in a clutter mean value that is too large and the resulting
failure to detect closely spaced targets. In addition, targets that
are adjacent to objects that posses strong RADAR returns i.e.
trees or cultural clutter will also fail to be detected. Examples
of this type of behavior will be presented in section IV.

To correct for these difficulties, an alternate algorithm was
developed. The alternate algorithm uses the same stencil as
in figure 2, but performs the statistical calculation using rank
order statistics. In this case the clutter mean is computed with
the following expression,

Median
fic = D;;. 6
He (4,4) €Stencil J ( )
In the next subsection we present the method used to calculate

ac.

CFAR; ; =

A. Calculation of the Clutter Sandard Deviation ¢

The estimate of the clutter standard deviation will be
presented in this subsection. For all pixel values in the stencil
region we first construct a cumulative distribution function
(CDF). This is a function F' such that [9]

F(z) =Pr{X <z}. )

Where Pr stands for probability. This function is only defined
for pixel values in the clutter ring, an example of which is
given in figure 2. In words, we require that the probability a
pixel value in the clutter ring is less than z be given by F'(x).
A typical example CDF for a stencil given by figure 2 is given
in figure 3. With the notion of a CDF we can define empirical
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percentile pixel values. In this paper we will only work with
two percentiles z; and z,.. For a fraction f with 0 < f <1,
the value z is defined using the CDF F' as

F(:L'f) Zf. (8)

Here f in the above equation can symbolically represents [ and
r. Thus, xg.5 represents the median value of the clutter. Using
our empirically obtained CDF we can compute fractional
values ;. To relate the calculated fractional values with a
standard deviation estimate we assume a Gaussian distribution
of clutter giving the following analytical expression for the
CDF [9]

1
F(x + erf 9
(@) = gl +eri(C R,
Where erf is the error function, defined by
erf(x / . (10)
\/_

With this background the algorithm used to compute ¢ is
then given by the following steps. First, a constant numerical
parameter ¢ (0 < g < 1) is chosen for the calculation of two
empirical symmetrical fractional values (z; and z,) given by

T =z and Tr =T 3. (11)

[N

With this specification, the amount of probability between the
values z; and z, is 1 — ¢. Mathematically, this is represented

by

F(z,) — F(z;) =1—q. (12)
Upon inserting equation 9 we obtain
1 Ty — ﬁ 1 Zp — ﬁ‘
erf —)=1—gq. (13)
et V26¢ )= (\/iac)
Using the oddness property of the error function
erf(—z) = —erf(x), (14)

inside the second term on the left hand side of the above
equation we obtain

1 r—
—erf( )+ erf(
V26¢ \/_ffc
Now remembering that z; < i < z,, and the symmetry with
which we choose x; and z, we note that

1

i(xr - ml) )
and therefore we can substitute %(xT — z;) inside each ar-
gument in equation 15 and remove all dependence on the
unknown mean f. When this is done and the expression
simplifies and the solution for o¢ is

Uy =1-q4. (15)

A—m =z, — = (16)

~ Tr — I
2v/2erfinv(l — q)

Here we have used erfinv to represent the inverse of the
function defined in equation 10.

At this point, with equations 6 and 17 we are then able
to use equation 5 to produced a CFAR image from the input
SAR image.

7)
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Fig. 3. A typical empirical cumulative distribution function (CDF) for the
magnitude of clutter returns surrounding a target.

The two methods described above were implemented and
tested. The detection results obtained were very similar to
those that will be presented in section IV and we delay a
presentation of any results until then.

It must be mentioned that each method just presented are
not very computationally efficient. In particular, the median
filter is found to be extremely slow due to the required
computationally intensive sorting. In the next section we
describe madifications to both algorithms aimed at decreasing
the processing time required to produce a CFAR image.

I1l. ALGORITHMIC SPEED UPS

In this section we present computationally efficient algo-
rithms that greatly decrease the amount of processing time
required for the production of a CFAR image. Towards this
end, in the first subsection we describe modifications applied
to the original Novak stencil. In the second subsection we
present modification to the median filtering approach. In the
following section we present detection results obtained with
each algorithm.

A. Algorithm Improvements to the Novak Stencil

In this subsection we present speed based algorithm im-
provements to the original Novak stencil. Towards this end
we first consider the modified stencil shown in figure 4. This
modified stencil is different than the previous stencil of figure 2
in two ways. The first, is that the center pixel in the original
stencil has now been replaced by a “block” of pixels. In
addition, the clutter ring that consisted of a single pixel border
is replaced by a rectangular “block” ring of pixels. With these
two modifications the CFAR algorithm works much as before.
We present the modified algorithm in two steps, the first
involves calculating global statistics and the second involves
calculating local statistics.

We begin the modified Novak algorithm with a calculation
of the global second order statistics of the entire fullscene
SAR image. The global mean /i and standard deviation 6¢
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Fig. 4. The modified block Novak CFAR stencil. The highlighted pixels in the
central block are all updated by clutter statistics estimations performed over
all highlighted pixels in the rectangular border. We note that the number of
pixels chosen in the central region and the block border are just demonstrative.
In a practical systems the number of pixels in each structure would be much
larger.

are calculated using the standard statistical formulas for the
mean and standard deviation of a set of data [9]

) |, M N
e = 31 ;J;Dz]

(18)

and

L 1 M N o
oG = UN ZZ(Di,J‘ - fic) (19)
i=1 j=1
Here M represents the number of rows in the input SAR image
and N the number of columns. These global statistics will be
compared with local statistics to determine the statistic used

in the CFAR equation 5.

The determination of the local clutter statistics is done with
the outer clutter ring shown in figure 4. The relations used for
computing these statistics are given by equations 2 and 3 from
section 1. Repeated here for convenience these equations are

1

=% D
Stencil ;. eStencil

fiL (20)

1,7 9

and

D;; — fic)?. 21
NStencil ( " NC) ( )

(i,5) €Stencil

Once estimates of the clutter mean and standard deviation
are computed, these numbers are used as representative esti-
mates for all pixelsin the central block. Thus, this algorithm
results in regions all of which have the same local clutter statis-
tics. This difference, in how many pixels we are computing the
local statistics for, leads to improved computational algorithm
performance. As in the previous algorithm, the number of
pixels between the central region and the clutter ring should
be large enough so that the largest target of interest located at
the center of the stencil will not intersect its own clutter ring.

Given the local estimates of the clutter statistics, iz, and 61,
the final estimate of the clutter mean and standard deviation

values for the central block of pixels in figure 4 is computed
with the following two equations

fic = max(fr , ba) , (22)

and

¢ = min(max(ér, orioor) ,0G) (23)

The “max” in equation 23 insures that the local standard
deviation is not too small, while the “min” insures that the
true local distribution is used. A typical ordering for the three
standard deviations in the above equations is given by

(24)

Finally, using fic and 6¢, equation 4 is used to calculate the
CFAR value for every pixel in the central block.

The main computational benefit this method has is that it
has turned single pixel operations into block pixel operations.
In the new algorithm, the input SAR image is now tilled with
much larger computational blocks, rather than single pixels.
In addition, local clutter estimates will be made using the
ring around the center block and applied to every pixel in
the center block. Thus many pixels will be processed with
the same clutter mean and standard deviation estimate. This
statistical calculation happens only once for each central block
and not for each pixel individually.

The algorithm just presented, when tested, did speed up the
CFAR calculation but retained the problem of not detecting
targets in high clutter environments. In addition, this CFAR
algorithm introduces some algorithmic dependence, namely
the method vyields artificial boundaries in the CFAR image
as each stencil is moved to a new set of pixels. These
boundaries are certainly not physical and may detract detection
performance. In the next section a modified median detection
filter is presented that corrects both of these deficiencies and
is computationally efficient.

OFloor < 0 < 0G -

B. Algorithm Improvements to the Median Sencil

In this subsection we present modifications to the median
CFAR algorithm presented in section Il that results in a
computationally more efficient algorithm with improved per-
formance in high clutter environments. Many of the ideas used
in this algorithm are borrowed from the work on the modified
Novak stencil presented in the previous subsection.

As a first observation, we cannot directly apply the results
from the previous subsection to the median filter. The ad-
dition of more pixels in the clutter border in figure 4 will
drastically slow down the median calculation. For computa-
tional efficiency the number of pixels sorted in the median
calculation has to be even smaller than previously. This is
accomplished with downsampling and the exact method used
will be presented in the algorithm description below.

The first step in this modified median CFAR calculation is
the computation of a mean and a standard deviation image
from the original SAR image. These are images where each
pixel represents the mean and standard deviation of the pixels
in a box surrounding the pixel of interest. This is most easily
performed using a stencil with an odd number of pixels along
a side, say 2d + 1. See figure 5 for examples of typical
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Fig. 5.  Typical stencil forms used in computing mean and standard
deviation images. The center pixel (in black) is overwritten with the average
(respectively standard deviation) of all the pixels in the box. The specific
stencil size is application dependent.

Fig. 6. The block median stencil used for computational efficiency. In the
upper left corner of that figure two filters have been overlayed. The meaning
is that the average of all pixels in that stencil have been placed at their
corresponding center location.

stencil forms used in this processing with d = 1 and d = 2
respectively.

As this is an application of a moving average filter standard
algorithms can be used [10] for processing. However, during
our work on this algorithm a more computationally efficient
method was developed and is described in [11]. As this
processing is not critical to the remaining algorithm it will
not be further described.

Once a mean and standard deviation image has been pro-
duced by local filtering or the algorithm described in [11],
local clutter statistics (fic and 6¢) are computed for each pixel
in the CFAR image using a filter like that shown in figure 2.
Specifically, for a given pixel in the original SAR image a
single pixel border is constructed around the corresponding
pixel in the mean and standard deviation images. A stencil of
this type is shown in figure 6 as a dark black line, surrounding
the central black pixel this computation will be associated
with. In addition, the pixels in the original SAR image that
are averaged to compute the values on this single pixel border
are shown in gray.

Rather than compute the median of all points along this
ring, we compute the median of all points spaced by a 2d + 1

...19deg/mstar3_9degmfs_1 Green=Truth; Red=Predicted

200 400 600

800 1000 1200 1400

Fig. 7. Detection of dense ground targets using Novak’s original mean based
CFAR. Notice how many internal targets in the blockade are not detected.

pixels (or more) from each other. These pixels are shown in
figure 6 in black along this single pixel border. When this
median is performed in the mean image this median value will
be assigned to fic. Similarly, when performed in the standard
deviation image this median value is assigned to 6¢. This
downsampling of pixels used in computing the median is the
greatest source of increased computational efficiency. In the
next section we will present a comparison of the detection
results obtained when using each of the methods discussed in
this section.

IV. ALGORITHM COMPARISONS

In this section we present some simple comparisons between
the various CFAR algorithms presented in this paper. Specif-
ically, comparisons are made between the computationally
improved Novak CFAR filter presented in subsection IlI-
A, and a computationally improved median CFAR filtering
presented in subsection 111-B.

As a representative example of the type of results ob-
tained when using each algorithm, we consider SAR images
taken from the Moving and Stationary Target Acquisition
and Recognition (MSTAR) data collection. In that collection,
dense target environments were not considered, and as such
no significant algorithmic differences were noted. To facilitate
a comparison of detection performance in a dense environ-
ment modifications to the original images were performed to
artificially increase target densities. This modification consists
of adding a section of densely spaced targets in the upper left
corner of a given image. The remaining sections of the image
are not modified.

In figure 7 we present the modified image and the detection
results obtained with the original Novak mean CFAR routine.
The specific image chosen was taken from the third MSTAR
collection set and represents spotlight SAR taken at a 9 degree
depression angle. In figure 8 we present a magnification of
the dense target region shown in figure 7. Here we can more
clearly see the detection performance. Note the significant loss
of target detections in the interior of the target cluster.

In figure 9 we diagram the Novak stencil used for the
detection of a target in the center of a image. Note the contam-
ination that other targets will cause to the stencil statistics. The
neighboring targets are the reason for the missing detection
from such an obvious target.
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Fig. 8. Detection performance in a high density target environment using

the original Novak a mean based CFAR. This figure is a close up of the high

density region. Notice the significant loss of detections.
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Fig. 9. Original Novak single pixel detection method. Note how neighboring
targets can incorrectly influence the CFAR result at the center. In fact in this
case the target is not detected.

In figure 10 we present the results of the median CFAR
in the same SAR image as in figure 7. Here one can see the
significant improvement that occurs because of the median
filter.

In figure 11 we present a magnification of the dense target
region shown in figure 10. Here we can more clearly see
the detection performance. Note the extremely accurate target
detections.

It has also been found that that the median CFAR filter
presented above improved detection performance in strong
clutter environments. There, the same effects of target con-
tamination hold when non-target scatters overlap the detection
stencil. The properties of the median filter work quite well at
eliminating the spurious effects due to these abnormally large
valued pixels.

V. CONCLUSION

In this paper we have presented several, modification to
the original Novak [1] CFAR detection stencil that improve
performance in various ways. First a rank ordering statistics
approach was proposed for detection, that increases the prob-
ability of detection in dense target environments. Next a mod-
ification to the original stencil that improved computational
efficiency was presented. Finally, the median computation was
improved with subsampling. It is hoped that these algorithmic

...19deg/mstar3_9degmfs_1 Green=Truth; Red=Predicted
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Fig. 10. Detection in medium target density using a median based CFAR.
Here the internal targets are correctly detected.
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Fig. 11. Detection in medium target density using a median based CFAR.
Close up of high density region. Again notice that the internal targets are
correctly detected.

improvements will help the automatic target recognition com-
munity in providing a more robust algorithm.
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