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Abstract

There currently exist a large number of algorithms aimed at reducing the dimension-
ality of a feature set used for classification. These algorithms make various assumptions
about the underlying data. Two very common statistical technique are the well known
Principle Component Analysis (PCA) and Multiple Discriminant Analysis (MDA) also
known as Linear Discriminant Analysis (LDA). Of these two techniques, only the MDA
algorithm explicitly uses class information. A more recent technique includes the max-
imization of the mutual information (MMI) between the projected features and their
classlabels [13]. For a nice overview of existing techniques for feature selection and
transformation see reference [3].

In this project I will empirically compare and contrast the classification and data
visualization performance of several algorithms for feature transformation with the
purpose of improving classification. Specifically I will consider PCA, MDA, and MMI
on a variety of data sets and retaining different numbers of projected features. Classi-
fication performance will be considered using a variant of a nearest neighbor classifier
called a learning vector quantization [4, 6].

1 Introduction

There currently exist a large number of algorithms aimed at reducing the dimension-
ality of a feature set used for classification by relying on the statistical properties of
the underlying distribution of data. Two common and well known examples of this
type of technique are Principle Component Analysis (PCA) and Multiple Discriminant
Analysis (MDA) also known as Linear Discriminant Analysis (LDA). In particular, for
classification, of the techniques mentioned, only the MDA algorithm explicitly uses
class information. Recently there has been interest in comparing the performance of
PCA against MDA [8]. It is generally felt that the projected feature subset produced
by MDA is better for classification purposes since the MDA algorithm finds a linear
transformation that maximizes a measure of class separation.
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The ultimate goal of any pattern recognition system is to achieve the best possible
performance on novel feature vectors. In practice this is often attempted by developing
a classification algorithms that performs “optimally” on a given subsection of data (the
training set). This can be done in many ways depending on the assumed classifier
form but a common theme is that the proposed classifier depends on a set of a-priori
unknown, but constant, parameters. In supervised machine learning it is assumed that
the designer of the pattern classifier has at his disposal a set of measured features and
their associated class labels. In one way or another all pattern recognition algorithms
use these samples to compute the unknown parameters of the learning algorithm.

In practical applications the dimension of the pattern space can often become quite
large without any obvious means for reducing this dimension. For instance, in fa-
cial recognition, usually the raw measurements represent an entire image and it is
not uncommon for the natural corresponding feature vector to contain several hundred
components. If probabilistic methods are used for classification the curse of dimension-
ality [4] makes it very difficult to guarantee enough representative samples to ensure
sufficient confidence in the estimated probability densities. In addition, for computa-
tional reasons it is often desirable to project the feature vector into a space of smaller
dimensional before the execution of the learning algorithm. These unfortunate situa-
tions creates the requirement that some sort of dimensionality reduction be preformed
before the parameters in the classification algorithm are estimated. Several common
techniques currently exist for performing dimensionality reduction. The goal of this
project is to empirically consider the following dimensionality reduction techniques and
how the affect classification performance: Principle Component Analysis (PCA), Mul-
tiple Discriminant Analysis (MDA), and Maximization of mutual information (MMI).
We briefly describe each of these base techniques before describing the extensions de-
veloped to make them class specific in section 3

Principle Components Analysis (PCA), also called the Karhunen-Loeve Transfor-
mation [5], is a purely statistical technique aimed at projecting the original feature
space into a smaller space, the individual components of which having zero correla-
tion. Because PCA is a pure statistical technique it does not incorporate any class
information. As such, it is commonly believed that the reduced feature space will not
necessarily perform optimally under classification [8].

Multiple Discriminant Analysis (MDA) [1, 2] explicitly considers the class labels
associated with each feature vector when computing its transformation. It obtains a
projection that maximizes a functional measuring the ratio of the spread of features
among different classes relative to the spread of the features within the individual
classes.

Maximization of Mutual Information (MMI) is a technique that guides its transfor-
mations in such a way to optimized the decrease in the entropy of the transformed class
variable. Since this technique is a cornerstone of this paper and will not be familiar to
most it will be described in detail in subsection 3.3.

This paper will empirically measure the data visualization and classification per-
formance of the above algorithms on a number of standard data sets. Specifically we
will attempt to duplicate as many results as possible from [13] time permitting. The
data set considered are described in section 3.4. For each of the projected spaces the
performance under classification will be assessed using a variant of a nearest neighbor
classifier call Learning Vector Quantization (LVQ) [4, 6] and provided by the soft-
ware [7].



2 Classifier Descriptions

In this subsection we describe the classifier used for classification performance. This
classifier was chosen because it was readily available on the web and was one of the
classifiers used in [13].

2.1 The LVQ Classifier

The LVQ classifier is a technique due to Kohonen [6] and is somewhat similar to K-
means clustering. The basic idea is that several prototypes of a given class are deposited
in feature space. The training points attract prototypes of the correct class and repel
those of the incorrect class. When the algorithm has finished, prototypes should be
close to the training points representing their class. Often the starting location of the
prototypes is given from the results of using a K-means clustering algorithm. Once the
iteration has converged the classification is taken to be that of the nearest (in Euclidean
distance) prototype point.

3 Algorithm Descriptions

For a concrete discussion in what follows, we assume that our data is given in Nc classes
given by {c1, c2, . . . , cNc} with original feature space given by D-dimensional feature
vectors for cp (denoted by x) contained in the set Di. In all the techniques we consider
below a projection matrix W will be constructed that project our D dimensional feature
vector into a smaller d dimensional space (d < D).

In general, as a preprocessing step it is good to do some data normalization1. Several
common data normalization steps are often used. “Standardizing” involves subtracting
from each feature the global mean (mean over all training points independent of class)
and dividing by the global standard deviation. “Sphering” transforms the original data
set into a new one with mean zero and a covariance of the identity matrix. In the results
that follow the data was sphered (using all of the data) before further transformations
took place.

After this process the PCA and MDA projections were computed using all of the
training data points. Due to the computational complexity of MMI only 1500 randomly
selected data points were used2. This is consistent with the results found in [13]. Below
we present a brief description of the individual feature selection algorithms considered
in this paper.

3.1 Principle Component Analysis (PCA)

Principle Component Analysis [1] is a method of computing, one vector, x0, that best
represents the complete data set. That is, x0 is the vector that minimizes the squared
error, J0(x0), between itself and every sample, xk, in all Di.

J0(x0) =

n
∑

k=0

||x0 − xk||
2. (1)

1When presenting classification results it is very important to document what preprocessing was done,
else it can be very difficult to reproduce an authors results as I found in this project.

2Sampled according the the empirical priors obtained from the entire dataset.



The x0 that minimizes J0 is determined by solving the eigenvalue equation for the
scatter matrix, S, where

S =

n
∑

k=1

(xk − m)(xk − m)t, (2)

where m is the mean of the full data set,

m =
1

n

n
∑

k=1

xk. (3)

The size of S is d × d, and consequently there will be d solutions to the eigenvalue
problem:

ST = λT. (4)

T1, the eigenvector corresponding to λ1, the largest eigenvalue, is the x0 that minimizes
J0 and therefore is the first principle axis of the new eigenspace. T2 is the second
principle axis, T3 is the third, etc. The raw data, xk, are then projected onto T ,
the eigenvector space. The dimensionality of the projected data may be changed by
including only the desired eigenvectors in the transformation matrix.

3.2 Multiple Discriminant Analysis (MDA)

Multiple Discriminant Analysis [1] is a linear transformation (y = Wx) that seeks to
maximize the function J(W ), the ratio of between-class scatter to within-class scatter:

J(W ) =
|S̃B |

|S̃W |
=

|W tSBW |

|W tSWW |
. (5)

SW , the within-class scatter matrix, is the sum of each classes scatter matrix:

SW =

Nc
∑

i=1

∑

x∈Di

(x − mi)(x − mi)
t. (6)

SB, the between-class scatter matrix is defined as

SB =
Nc
∑

i=1

ni(mi − m)(mi − m)t, (7)

where m is again the mean of all the data (Eq. 3) and mi are the means of each class,

mi =
1

n

∑

x∈Di

xi. (8)

The columns of W that maximize J are the eigenvectors that solve the generalized
eigenvalue problem:

SBwi = λiSWwi. (9)

The size of SW and SB are Nc × Nc and the number of eigenvectors that solve the
generalized eigenvalue problem is (Nc−1). The raw data can then be projected onto the
desired dimensions of the eigenspace. MDA takes into account class-wise information,
however, this information is blurred when SW is summed over all classes.



3.3 Maximization of Mutual Information (MMI)

Because the metric of mutual information for improved class separability maybe un-
familiar to most people, in this subsection we explain this technique in detail. For
additional, details please see the original references [12, 13, 14].

The motivation for the maximization of mutual information comes from its relation
to the entropy of a random variable. For a discrete random variable the definition of
entropy as defined by Shannon is given by

H(C) = −
∑

c

P (c) log(P (c)) (10)

which is defined in terms of the class prior probabilities P (c). A random variable
that is deterministic has an entropy of zero. A random variable that has a uniform
distribution has the largest possible entropy. When a continuous feature vector Y is
observed this information may change the probability distribution of the class variable.
Mathematically the entropy of the discrete class random variable C after observing the
continuous variable Y is given by

H(C|Y ) = −

∫

y

p(y)

(

∑

c

p(c|y) log(p(c|y))

)

dy (11)

The amount of entropy decrease (H(C) − H(C|Y )) (which measures how much the
knowledge of Y influences the understanding of C) is called the mutual information
and is given mathematically in our discrete continuous case by

I(C, Y ) =
∑

c

∫

y

p(c, y) log(
p(c, y)

P (c)p(y)
)dy (12)

As a special case, if C and Y are independent then p(c, y) = P (c)p(y) and the mutual
information between C and Y is zero.

The definition above can be seen to be effectively a type of metric between the joint
class-feature probability distribution p(c, y) and the product of the marginals p(c)p(y).
This analogy will come in handy later for motivating additional measures of distance
between probability densities functions.

A motivation for the use of mutual information for classification comes from Fano’s
classification bound, which limits the bound on misclassification after observing a fea-
ture vector Y . Fano’s bound is given by

Pr(c 6= ĉ) ≥
H(C|Y ) − 1

log(Nc)
=

H(C) − I(C, Y ) − 1

log(Nc)
(13)

Here ĉ is the estimated class and c is the true class. Fano’s bound gives a lower bound on
the probability of misclassification. We see that by maximizing the mutual information
between C and Y we are able to decrease this lower bound and correspondingly decrease

the probability of misclassification. Finding transformed features Y that maximizes
the mutual information I(C, Y ) is then a prescription for finding features that could
possibly achieve good classifier performance.

With this background, a formalized objective for pursuing the idea of maximization
of mutual information between the transformed features Y and the class random vari-
able C can be stated as follows. Find a transformation g of the input features X into
Y that maximizes the mutual information between C and Y . If the transformation



is parameterized by a variable w, i.e. y = g(x;w) the parameters w that enforce this
maximization can be found with a simple gradient assent procedure as follows

wt+1 = wt + η

N
∑

i=1

∂I

∂w
= wt + η

N
∑

i=1

∂I

∂yi

∂yi

∂w
. (14)

Other optimization techniques such as Conjugate-Gradient, Levenberg-Marquardt or a
stochastic method could also be used. In this report the performance of several variants
on these maximization techniques will be reported on.

The evaluation of Eq. 12 is computationally difficult due to the logarithmic and
fractional dependence on the probability density functions in their expressions. We can
arrive at a more computationally efficient expressions by considering an alternative to
the Shannon entropy; that given by the Renyi entropy. The Renyi entropy is defined
for discrete and continuous random variables as

HR(C) = − log(
∑

c

p(c)2) (15)

HR(Y ) = − log(

∫

y

p(y)2dy) (16)

The computational simplifications to using the above equations can be seen when the
probability density function appearing in those expressions are approximated using
Parzen density [10] estimation with Gaussian kernels. Gaussian kernels for the d di-
mensional y vectors are given by

G(y,Σ) =
1

(2π)
d
2 |Σ|

1

2

exp(−
1

2
ytΣ−1y) . (17)

The Parzen approximation of a continuous probability density function p(y) is given
with a sum of these Gaussian kernels as

p(y) ≈
1

N

N
∑

i=1

G(y − yi, σ
2I) . (18)

Here I is the d × d dimensional identity function.
The computational simplifications in using the Renyi definition of entropy with a

Gaussian Parzen probability density estimation is a consequence that of the fact that
Gaussians’ satisfy the following simple convolution like rule

∫

y

G(y − ai,Σ1)G(y − aj ,Σ2) = G(ai − aj ,Σ1 + Σ2) . (19)

Combining the definition 18 and 19 the quadratic integrations found in 15 simplify to

∫

y

p(y)2dy =
1

N2

N
∑

k=1

N
∑

j=1

G(yk − yj, 2σ
2I) (20)

Thus we see that an approximation to the Reyni entropy can be evaluated as a sum of
pairwise interactions.

It remains now to find an approximate quadratic measure of mutual information.
One such measure between two probability distribution f and g is given as follows and
heuristically derived in [11]

KT (f, g) =

∫

f(x)2dx +

∫

g(x)2dx − 2

∫

f(x)g(x)dx . (21)



Using the idea that we desire a computationally tractable approximate measure of
mutual information between the probability density functions p(y, c) and p(y)p(c),
we can use Eq. 21 with these PDF’s to arrive at the following objective function to
maximize on transformation.

IT (C, Y ) =
∑

c

∫

y

p(c, y)2dy +
∑

c

∫

y

p(c)2p(y)2dy − 2
∑

c

∫

y

p(c, y)p(c)p(y)dy (22)

To notationally evaluate the gradient of this expression we define several subexpressions

V(cy)2 ≡
∑

c

∫

y

p(c, y)2dy (23)

Vc2y2 ≡
∑

c

∫

y

p(c)2p(y)2dy (24)

Vcy ≡
∑

c

∫

y

p(c, y)p(c)p(y)dy . (25)

Giving as a componentwise decomposition of IT

IT (C, Y ) = V(cy)2 + Vc2y2 − 2Vcy . (26)

For maximization the gradient of IT per sample ∂I
∂yi

is required and is given by the
corresponding three term sum

∂IT

∂yi
=

∂V(cy)2

∂yi
+

∂Vc2y2

∂yi
− 2

∂Vcy2

∂yi
. (27)

With this framework we are in a position to develop the Parzen density approxi-
mations for these expressions. To do so we assume that we have Jp samples for each
class cp giving estimates of the prior class probabilities of

P (cp) =
Jp

N
,

Nc
∑

p=1

Jp = N (28)

As a notion in what follows for a sample y in the output space, when class is irrelevant
the i-th sample will be written yi with 1 ≤ i ≤ N , when it is relevant we will use
ypj as the notation, where the class index 1 ≤ p ≤ Nc and the index within the
class 1 ≤ j ≤ Jp. Using a Parzen density estimation (Eq. 18) we estimate the class
conditional densities as

p(y|cp) =
1

Jp

Jp
∑

j=1

G(y − ypj, σ
2I) . (29)

Since the joint probability density p(c, y) can be decomposed as a conditional and a
prior (p(c, y) = p(c)p(y|c)) we get for the joint PDF between class cp and the mapped
features y

p(cp, y) =
1

N

Jp
∑

j=1

G(y − ypj, σ
2I) (30)

Marginalizing to obtain p(y) =
∑

c p(c, y) we obtain

p(y) =
1

N

N
∑

i=1

G(y − yi, σ
2I) (31)



With these expressions we are a situation where we can evaluate approximations to
the individual expressions in Eq. 23, 24, and 25 as follows

V(cy)2({ci, yi}) =
1

N2

Nc
∑

p=1

Jp
∑

k=1

Jp
∑

l=1

G(ypk − ypl, 2σ
2I) (32)

Vc2y2({ci, yi}) =
1

N2





Nc
∑

p=1

(

Jp

N

)2




N
∑

k=1

N
∑

l=1

G(yk − yl, 2σ
2I) (33)

Vcy({ci, yi}) =
1

N2

Nc
∑

p=1

Jp

N

Jp
∑

j=1

N
∑

k=1

G(ypj − yk, 2σ
2I) . (34)

In the same vein we require the derivative of the above expressions with respect to the
transformed sample points yi. After some simplification and using the following fact

∂

∂yi
G(yi − yj, 2σ

2I) = G(yi − yj, 2σ
2I)

yj − yi

2σ2
(35)

(note the transposition yi and yj on output) these are given by

∂V(cy)2

∂yci
=

1

N2σ2

Jc
∑

k=1

G(yck − yci, 2σ
2I)(yck − yci) (36)

∂Vc2y2

∂yci
=

1

N2σ2





Nc
∑

p=1

(

Jp

N

)2




N
∑

k=1

G(yk − yi, 2σ
2I)(yk − yi) (37)

∂Vcy

∂yci
=

1

N2σ2

Nc
∑

p=1

(

Jp + Jc

2N

) Jp
∑

j=1

G(ypj − yci, 2σ
2I)(ypj − yci) . (38)

With these expressions and a parameterized transformation yi = g(xi;w) we have
a well defined gradient assent procedure. In this paper, the specific transformation we
seek is given by a linear transformation that projects from our original feature space
onto of dimension D to a lower dimensional space of dimension d. That is we seek the
transformation W such that

W = argmaxW (I({ci, yi})); yi = W txi (39)

Subject to the constraint W tW = I. In this case the derivatives of yi with respect
to xi are given by ∂y

∂W
= xt. Here W is a D × d orthonormal matrix. With these

specifications a gradient assent method can be derived using Eq. 14. As given we will
call this method the matrix gradient assent algorithm.

In the matrix formulation above we have dD unknown parameters subject to the
constraint that W is an orthonormal matrix. This constraint can be simplified and the
dimensionality reduced, by parameterizing the linear transformation with rotations.
The idea is to start with a given orthogonal matrix W0 and to perturb from this by
rotating subspace spanned by the columns of the W0 into the subspace perpendicular
to that spanned by the columns of W0.

Since any of the d initial column vectors in W0 can be rotated toward any of the
D−d dimensions of the orthogonal complement of the columns of W0 we have d(D−d)
angles to parameterize by. The can be represented via Givens rotations.

Define Ĝ(o, u, θ) as a D × D unit matrix with the exception of four elements,
Ĝo,o = cos(θ), Ĝo,u = sin(θ), Ĝu,o = − sin(θ), and Ĝu,u = cos(θ). A specific rotation



plan is defined by the indices o and u and Ĝ(o, u, θ)W0 rotates the columns of W0 by
an angle θ along that plane. Thus we can write

W =

(

d
∏

o=1

D
∏

u=d+1

Ĝ(o, u, θod+(u−d))

)

W0 =





d(D−d)
∏

i=1

G(i, θi)



W0 (40)

where as in [13] we define a different indexing structure of G(i, θ) = Ĝ(floor((i−1)/(D−
d)) + 1, ((i − 1)mod(D − d)) + d + 1, θ) The required derivatives are then computed
with this expression as

∂W

∂θk

=

(

k−1
∏

i=1

G(i, θi)

)

G′(k, θk)





d(D−d)
∏

i=k+1

G(i, θi)



W0 (41)

where G′(k, θk) = ∂
∂θk

G(k, θk). This matrix is otherwise a zero matrix, except for

the trigonometric functions in Ĝ(o, u, θ)) have been replaced by their derivatives. A
gradient ascent algorithm for updating Θ = [θ1, θ2, . . . , θd(D−d)]

t is given by

Θt+1 = Θt + η

N
∑

i=1

∂I

∂yi

∂yi

∂W

∂W

∂Θ
(42)

Please see Appendix A for a complete derivation of this expression. In what follows
this will be called the parametric gradient ascent algorithm. It was this algorithm that
will be reported on in this write up.

For this investigation the above algorithms were coded in a mix of Matlab and C
using the Mathworks Mex API. The inclusion of the C language was critical because of
the computational nature of the MMI approach. Even with these speed ups the MMI
projection was computed on a subset of size 1500 chosen from the training set.

Once the objective of maximization has been formalized there are still some details
to be worked out that are in no means trivial. The two main items that need discussion
are the setting of the η parameter and the choice of the bandwidth (σ) of the Gaus-
sian kernels. These two parameter have a delicate balance between them that must
be understood when performing gradient ascent iterations. The size of the Gaussian
bandwidth determines how local the Gaussian Parzen estimate are with a larger band-
width resulting in more non local interactions. When the iterations begin σ should be
taken to be “large” something like half the projected distance between the two farthest
points. The consequence of this large bandwidth is that the Gaussian evaluations (and
its derivatives) are very small. Thus initially the magnitude of η which would need to
be searched over looking for a maximum (via some line search technique) can be very
large. As the iterations proceed and Parzen bandwidth decreased the corresponding
search range of η should be decreased since the magnitude of the derivatives increase.
To perform these operations correctly an algorithm must use of the knowledge of σ and
the magnitude of the derivative to dynamically set the line search technique used for η.
In this code, due to time considerations, a very simple line search consisting of the eval-
uation of the objective function at several discretized values of η. This seemed to work
well in the two dimensional case since this algorithm was able to reproduce the classi-
fication and the data visualization results from [13]. This algorithm was less successful
in reproduction of the classification results in higher dimension and the most likely
discrepancy is due to the choice of used maximization technique. In higher dimensions
one expects more local maximums and correspondingly requires a more refined search
technique. As mentioned previously, other choices of nonlinear optimization routines
maybe better suited for this problem and not suffer from these difficulties.
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Figure 1: Examples of the PCA, MDA, and MMI projections for the LandSat data. The
picture on the left is a the class independent PCA projection. The picture in the middle
is the MDA projection and is equivalent to that shown in reference [13]. The picture on
the right is the maximal mutual information projection. For details and discussion of these
results see the main text.

3.4 Considered Data Sets

3.4.1 UCI Landsat Database

This UCI data set [9] has 6 classes each with 36 features each (a 3 by 3 multi-spectral
image with 4 spectral bands. This data was used in [13] to test the maximization of
mutual information algorithms. This dataset was chosen due to it use in the above men-
tioned paper as well as it is intermediate size and complexity. Due to time constraints
only results from this data set will be presented.

4 Computational Experiments

In this section I’ll describe the computational experiments that I performed. For this
project I focused mainly on replicating the results from [13]. In that paper, the MMI
projection was found using the θ parameterized formulation above, coupled with gra-
dient ascent. Since the gradient ascent by nature finds only a local maximum. This
procedure was performed several times with different initial conditions and the config-
uration with the largest mutual information was returned. The reference [13] uses as
initial conditions a PCA projection, a MDA projection, and several random projections,
selecting the final structure to be the one with the largest mutual information.

To duplicate the results from [13] I present a study in data visualization where
by I project the given data set into a plane and observe how well the points become
separated under the different PCA, MDA, and MMI transformations.

In addition, an LVQ classifier as describe in [7] was used to classify the data sets
projected into various subspaces. The one parameter required for that classifier is the
number of code vectors. For the experiments presented here the number of code vectors
was taken to be 200.

5 Results

5.1 UCI LandSat Database

We first present the results on the UCI at a high level and then discuss some details
of the calculations to obtain these.
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Figure 2: Left: The LDA projection of the LandSat data obtained during the course of
this investigation (all training data is plotted). Right: The LDA projection results from
reference [13]. These results are very nearly identical.

5.2 Visualization of Class Structure in Data

The first experiment considered has to do with data visualization. Here we consider
the optimal projection defined by the three algorithms PCA, MDA, and MMI on a
two dimensional plane. In both PCA and MDA this means projecting the feature
vectors onto the eigenvectors with the two largest eigenvalues. The MMI projection is
obtained by seeking the projection that maximizes the mutual information between the
projected feature space and the class labels and is further described in subsection 3.3.

In Figure 1 we see the two dimensional projections (PCA, MDA, and MMI) ob-
tained for the LandSat data, during this investigation. These are placed side by side
to emphasize range of different projections available. How these compare with the
projections found in [13] will be discussed below. From these pictures one can see that
the result of the sphering operation results in the PCA projection having a very spher-
ical looking structure. In fact the projected data all lie on top of each other. Thus
one can conclude that the PCA projection will not be a good one for classification.
The obtained projection for MDA matches exactly that found in reference [13], and in
Figure 2 we present the results obtained in this study adjacent to a duplicate picture
taken from [13]. One can see that the MDA graph does indeed maximize the criterion
of between-class scatter to the within-class scatter, but (in this case) at the expense of
placing several clusters on top of each other. The MMI projection matches very well
with that from the original reference [13], and in Figure 3 we present the two results
side by side.

In Figure 2 we can see that the two projected results are very similar. This is
to be expected since the MDA algorithm is a deterministic algorithm. Any observed
difference could be a result of the subsampling of plot points found in [13]. In general
the agreement is quite good.

In Figure 3 we can see that while the MMI projection produced in this study has
the same qualitative features as the MMI projection found in [13], there are some
differences.

The results are similar in that we see the same general structure is formed between
the clusters of corresponding classes. In addition, when comparing the classification
accuracy with the LVQ classifier it was found that the accuracy that I obtained and
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Figure 3: Left: The MMI projection of the LandSat data obtained during the course of this
investigation. Right: The MMI projection results from reference [13]. For possible reasons
for the slight differences please see the main text.

obtained in [13] were comparable, see below. The results might be different because of
several factors.

• The MMI projection presented in [13] was the result of the mutual information
maximization over a random set of 1500 instances drawn from the initial training
set of size (∼4400). Is very unlikely that the samples used here in computing the
MMI projection were the same as those used in [13].

• The MMI projection presented in [13] were the results of selecting the final pro-
jection with the largest mutual information. Several random initial conditions
were used to derive the final projection. In particular, maximal mutual informa-
tion projections were computed with the initial projection corresponding to PCA,
MDA, and three random projections. This random initial condition start makes
it difficult to compare the exact projections.

• As mentioned at the end of subsection 3.3 there exist several techniques to carry
out the required maximization of these several readily suggest themselves. They
are gradient ascent (implemented in this study), conjugate gradient, Levenberg-
Marquet, and stochastic techniques. In the simple gradient ascent method im-
plemented in this study a very simple strategy was used. This had the effect (in
addition to possibly selecting a different local maximum) of limiting the accu-
racy to which maximum could be computed. An adaptive gradient ascent (that
modifies the search range of η as σ changes) would need to be implemented to
correct for this deficiency. Different optimization techniques will perform better
or worse on depending on the problem they are applied to. Depending on the
method used in [13] results could be different. It remains to be shown how the
alternative ascent procedure perform.

As a visualization into the performance of the MMI algorithm, in Figure 4 we
present the sequence of iterations that the MMI algorithm goes through beginning
with an initial projection provided by MDA. One can see that the effect of the MMI
maximization is to spread out the clusters that lie on top of each other in the MDA pro-
jection. In Figure 5 we present the sequence of iterations that the MMI algorithm goes
through beginning with a random initial projection. We can see that very quickly the
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Figure 4: MMI iterations beginning with the MDA projection. The iterations are read from
top to bottom, left to right. Note how the MMI projection pulls the classes apart.
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Figure 5: MMI iterations beginning with a random projection. The iterations are read from
top to bottom from left to right. The last picture is the 11th iterate.



Dim: 2 3
MMIT 75.7 86.2
MMIW 79.0 80.5

Table 1: A comparison of LVQ classification accuracies under MMI projection. The row
titled MMIT are results taken from [13]. The row titled MMIW were computed in this study.

Region Num. entries d=2 d=3
1 461 97.83 95.88
2 224 88.84 90.62
3 397 60.96 71.79
4 211 78.67 43.13
5 237 78.06 78.48
6 470 71.91 85.53

Table 2: Individual classification accuracies for the 6 regions in the LandSat data.

MMI projection algorithm is able to find a much better configuration (for classification)
of the points in the plane.

5.3 LVQ Classification Results with the 2-D Projected
Data

In this subsection we present results using the MMI projection and an LVQ classifier
to compute classification accuracies under this projection. The LVQ classifier was run
with 200 code vectors and the transformed testing data classified. When this was
performed the obtained results are presented in Table 1. The classification accuracy
of 2 and 3 dimensional projections are comparable. In addition to this information
in Table 2 we present the accuracies of the LVQ classifier under projection into the
dimensions d = 2 and d = 3.

6 Conclusions

In this paper we have duplicated a subset of the results found in [13]. In that paper a
technique for feature projection was presented that relied on the idea of maximization of
mutual information between the projected features and the class labels. This technique
has been shown to be very promising at finding projections that are optimal with
respect to classification. In this project we were able to duplicate a subset of the
results presented in [13]. We were able to duplicate the MDA projection and the
MMI projection for the Landsat data. In addition, while using a LVQ classifier we
were able to duplicate some of the classification accuracy results. It is also concluded
that the obtained projection depends to a great extend on the type of ascent technique
used. In future work the sensitivity of the MMI projection under different optimization
techniques will be investigated.



A Required Partial Derivatives For Optimiza-

tion

In this appendix we discuss the implementation of the required derivatives involved in
the maximization of mutual information. Specifically this appendix develops in detail
some pseudo-code expressing the calculation of the derivatives required in maximizing
mutual information.

For the update of the k-th component of Θk, the individual components in the
derivative term in Eq. 42 can be written as

N
∑

i=1

∂I

∂yi

∂yi

∂W
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∂Θk
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∂Θk
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Here yi,l is the l-th component (l ∈ 1, . . . , d) of the i-th transformed vector yi, and
Wm,n is the m-th row and n-th column of the transformation matrix W . Since the
transformed points yi are given in terms of the xi via. yi = W txi by writing out
components of yi as follows (note the transposition of the components of W )

yi,l =

D
∑

m′=1

Wm′,lxi,m′ = W1,lxi,1 + W2,lxi,2 + W3,lx3 + . . . + WD,lxD (45)

One can arrive at the following expression for the derivative of yi,l with respect to Wm,n

in terms of the components of xi

∂yi,l

∂Wm,n
= xi,mδn,l (46)

Inserting this into Eq. 43 we obtain
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