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Abstract

Recently Bruno and Vaynblat introduced a new mathematical model to describe shock
induced martensitic phase transitions. This model is much simpler than prior ones —
requiring, essentially, no quantities that cannot be measured directly. Nevertheless,
its predictions are in very good agreement with the experimental results.

In the calculations that Bruno and Vaynblat did to match their model against ex-
periments, they simplified the dynamics — replacing rarefaction waves by “rarefaction
discontinuities”. In this thesis we implement the Bruno-Vaynblat model without any
such simplifications. In the process of doing this, a new numerical method for nonlin-
ear hyperbolic conservation laws with phase transitions is developed. Furthermore,
in order to improve the quantitative agreement with experiments, several extensions
of the Bruno-Vaynblat model are introduced and studied. These include the addition
of dissipative effects, and the introduction of a modification to the equation of state
(for the Austenite phase) near the critical transition pressure.

Thesis Supervisor: Rodolfo Ruben Rosales
Title: Professor of Applied Mathematics
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Chapter 1

Introduction and Background

1.1 Introduction

Phase transitions are common in nature, such as the solid-to-liquid (melting) or
liquid-to-gas (evaporation) changes most substances undergo as temperature and/or
pressure are changed. Solid-to-solid phase transitions, while less common, also occur
in nature. For example, the atomic structure of solid graphite can change to that of
diamond under sufficiently large static pressures. These pressures are so large that
they are difficult to achieve in static conditions, but they can easily be produced
with shock waves. The jump in pressure carried by a strong shock wave can be large
enough to promote the required atomic rearrangements. Small quantities of diamond
can indeed be produced in this way [21, 26].

Shock-induced solid-to—solid phase transitions occur in systems other than the
graphite-diamond one mentioned above. The a—iron to e-iron phase transition dis-
covered experimentally by Bancroft et al. in 1956 is another example. Bancroft et al.
detected this phase transition by measuring the velocity of the free surface of an
iron sample through which a strong shock wave passed [2]. A detailed description
of Bancroft et al.’s experiment is given in section 1.2. Eighteen years later, Barker
and Hollenbach [5] repeated the measurements by Bancroft et al. with a much higher
degree of accuracy. The free surface velocity plots they produced are still widely used

by theoreticians to test models for the a—e iron phase transition. One such model is
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the one proposed by Bruno and Vaynblat (BV), on which the work in this thesis is
based [13, 14].

The model Bruno and Vaynblat introduced to describe shock induced martensitic
phase transitions is much simpler than prior ones. Earlier models required functions
and constants whose determination is not entirely clear (at least to this author), while
the BV model has no quantities that cannot be measured independently of the phase
transition experiments. Nevertheless, its predictions are in very good agreement with
the experimental results.

In the calculations that Bruno and Vaynblat did to match their model against
experiments, they simplified the dynamics — replacing the rarefaction waves by “rar-
efaction discontinuities”. This makes the calculation of the solution to the equations
much simpler, since then they can be solved essentially exactly. To be more precise,
with this assumption the problem is reduced to that of solving a small number of
Riemann problems since the wave interactions are simplified to the extent that the
state variables are piecewise constant at any time in the evolution.

In this thesis we first implement the BV model without the “rarefaction discon-
tinuity” simplification. This requires the solution of a nonlinear hyperbolic system
of conservation laws with discontinuous coefficients. The discontinuous coefficients
arise because of the phase transformation. In the process of doing this, a new nu-
merical method for nonlinear hyperbolic conservation laws with phase transitions is
developed. The results of this calculation are then compared with the experiments of
Barker and Hollenbach, and the discrepancies and their possible causes are discussed.

Next, in order to improve the quantitative agreement of the model with the exper-
iments, several extensions of the Bruno-Vaynblat model are introduced and studied.
These include the addition of dissipative effects and the introduction of a modification
to the equation of state for the austenite phase near the critical transition pressure.
In both cases numerical algorithms for the augmented model are implemented, and
the results of the calculations are compared with the experiments.

As a conclusion to this section, we mention that there are several motivational

factors for the work presented in this thesis. The first is that of a purely scientific
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interest. The shock experiments described in the next section represent an example of
a phase transformation happening very far from equilibrium. At this time not many
qualitative predictions can be made in these situations. It would be of great scientific
interest to be able to extend current understanding of these experiments through
accurate mathematical modeling techniques. Secondly the introduction of a viscosity
in chapter 4 to the base BV-theory provides a way of measuring the viscosity of iron
under extreme pressure conditions. This value would be of interest to the geophysical
community where the similarity in the pressures encountered here and those at the
center of the earth make it an estimate of the viscosity of the earth’s liquid core.
The determination of the viscosity of the earth’s core would provide an important
parameter in theories relating to the earth’s geodynamo [38]. We note here that
the viscosity of the iron in the earth’s outer core is currently not very well known.
Predicted values spread 14 orders of magnitude [64]. The two values for the viscosity
of iron predicted in this thesis are 9.11 x 102 P and 1.27 x 10* P. We note that
these two values fall in the middle of the range currently predicted by the geophysical
literature [64].

Additional support for the values of the viscosity found in chapter 4 are provided
by workers in the field of steady shock propagation in solids. There an attempt to
predict values of an effective viscosity for aluminum [58, 63| to explain wave profiles
seen in experiments similar to the ones considered in this thesis [67], predict effective
viscosities in the range of 1.4 x 10 P — 2.0 x 10* P. The viscosities predicted in this

study agree quite well with these earlier calculations.

1.2 Experimental Background

Many materials undergo solid—to—solid phase transitions under sufficiently large static
pressures [41, 62]. In parallel with static research on solid-to-solid phase transfor-
mations, many groups were investigating the possibility of using dynamic forces to
produce the high pressures required. In the 1950s, a discrepancy arising from data

taken from static experiments [11, 10] versus data taken from impact experiments [73]
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prompted an investigation into the possibility of a solid-to—solid phase transformation
in iron [2]. Due to the extremely high pressures needed to produce this phase trans-
formation, early static experiments failed to detect it!. In 1956 Bancroft et al. [2] was
able to show that iron has a solid—to—solid phase transformation, at around 13 G Pa.
Compared to irons tensile yield stress of 0.1 GPa [43] this is an enormous pressure.

In order to reach the pressures needed for the transformation, Bancroft et al.
used dynamic forces rather than the static ones used by their predecessors. The
experiments by Bancroft et al. involve sandwiching a flat, cylindrical, iron sample
between baratol (a high power explosive made of T.N.T. and barium nitrate) on one
side, and a set of recording pins positioned against the opposing surface (see the left
picture in figure 1-1). The baratol is used to generate a strong shock wave that travels
into the sample, while the pins are used to record the motion (velocity) of the “free
surface”, on the other side of the sample. When the baratol is ignited, a strong shock
wave is generated that travels into the sample. On the other side of the sample, all
the disturbances that arrive there, after traveling through the sample, are recorded
by the pins.

Bancroft et al. reported that, when the experiment is conducted, the pins record a
series of three discontinuous jumps in the velocity of the free surface. Bancroft et al.
postulated that three, one-dimensional,? shock-like waves are produced by the ex-
plosion, propagate through the iron, and eventually impact upon the free surface
producing the observed discontinuous velocity jumps of the free surface. The picture
on the right in figure 1-1 shows a sketch of a space-time diagram illustrating this
situation: Three sharp “discontinuous” waves are born at the origin — the position
of the surface of the sample is in contact with the baratol at the time of the explosion.
These waves travel through the sample at different speeds and eventually reach the
free surface. As each wave reaches the free surface, a jump in the free surface velocity

is produced.

'Recently the use of synchrotron radiation and a diamond-anvil apparatus has been used for
very accurate static investigations of the solid—to—solid phase transformation in iron [7, 36, 51].

2That is, the waves are plane, with phase surfaces parallel to the sample cylinder faces, and
propagate along the direction given by the axis of the cylinder.
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Figure 1-1: Left: Experimental apparatus used in the 1956 experiments by Bancroft et al.
Right: Sketch of a space-time wave diagram for the experiment. The horizontal axis is
time, measured in microseconds from the moment of the baratol explosion. The vertical
axis is space, measured in centimeters along the axis of the cylinder sample, from the
interface in contact with the baratol. The top dashed line plots the free surface position
and the bottom dashed line plots the position of the interface originally in contact with
the baratol. The middle dashed line is a plot of the particle path for a typical particle in
the iron sample. At time ¢ = 0 three shock-like waves (solid lines) originate at the origin
and travel into the sample. As each wave arrives to the free surface, it imparts a jump to
the particle velocity there, producing a jump in the free surface velocity which is recorded
by the pins shown on the left picture. These pictures are replicas of similar ones presented
in [2].

Bancroft et al. interpreted the results of their experiments as follows:

e Had the experiments produced only two jumps in the free surface velocity, the
first jump would be interpreted as being due to the iron’s elastic response, and
the second to its plastic response®. That is to say, the pressure wave generated
by the explosion would split into two shock waves: the first weaker and faster
wave travels via the elastic response of the material, while the second slower
and much stronger wave travels via the plastic response of the material. These
waves, upon arrival at the free surface, would produce two jumps in the free

surface velocity.

e The presence of a third jump/wave can be explained by the hypothesis that a

polymorphic solid-to-solid phase transformation happens in the sample, where

3Here we define elastic and plastic in a material science manner. An elastic deformation is a
deformation from which the iron can recover its original form. A plastic deformation is one in which
the iron cannot.
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the atoms of iron rearrange themselves after a strong impact, changing from
one crystalline structure to another. This transformation is similar to the one

that had previously been observed in steel.

The waves produced are then: First, a shock wave in elastic iron. Second, a

shock wave in plastic iron. Third, a phase transformation wave.

This interpretation is the currently accepted one. The initial phase of iron is now
called a-iron and is normal phase of iron found at room temperature. It possesses a
body centered cubic structure and is ferromagnetic. The transformed phase is called
e-iron and is a more compact form of iron found only at much greater pressures.
It possesses a hexagonal closed packed crystalline structure and is paramagnetic.
When speaking of solid-to—solid phase transformations of this type in a more general
context, the first phase of the material is often referred to as the austenitic phase or
austenite, and the second phase as the martensitic phase or martensite.

Advances in laser interferometry technology allowed experiments of the same type
as those carried by Bancroft et al., but with much more accurate measurements of the
free surface velocity than those possible with the pin technique used by Bancroft et al.
Experiments using an interferometer were performed by Barker and Hollenbach in
1974, at the Sandia National Laboratory [5]. Since all the theoretical work that
follows will be compared to the Barker and Hollenbach experiments, we now describe
these experiments in some detail.

Barker and Hollenbach’s iron samples were taken from very pure flat iron stock.
In their experiment the impact delivered to the samples is produced by firing an
impactor at the iron target, using a high-velocity powder gun (see figure 1-2 for a
sketch of the experimental set up). Opposite the face where the impact is delivered,
a laser interferometer is used on a portion of the specimen surface. Any motion of
this free surface imparts a Doppler shift in the wavelength of the laser light, and
the number of interference fringes is recorded. The number of fringes is proportional
to the velocity of the free surface, which is recorded versus time as the experiment

proceeds. In the plots produced (see the left picture in figure 1-3), the unit of time
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Figure 1-2: Setup for the Barker and Hollenbach experiments. The interferometer is not
displayed. This picture is a replica of the one presented in [5].

is scaled by the total thickness of the sample that produced it, so that the horizontal
axis in the plots is an inverse velocity. Thus each wave signature appears at a position
equal to the inverse of its average velocity across the sample.

A representative sample of some of the Barker and Hollenbach experimental plots
obtained by varying the impactor strength and sample length is shown on the left in
figure 1-3. Only a few curves are presented out of the sixteen or so experiments that
were performed. These few experiments have been selected to show the full range of
observed effects. Each curve is given the number assigned by Barker and Hollenbach
to label their experiments. Each jump in a curve corresponds to the arrival of a wave
at the free surface, which responds by a change in its velocity (see the right frame in
figure 1-1). Sharp jumps indicate the arrival of a “discontinuous” wave (e.g.: a shock
wave) and wide jumps the arrival of a “smooth” wave. We notice the following facts:

e All the plots show a relatively small wave at time/thickness ~ 0.17 sec/km,

involving a change in free surface velocity from 0.00 km/sec to approximately
0.05 km/sec.
e For weak impacts (e.g.: experiment number 14) or very strong impacts (e.g.:

experiment number 9) only one additional wave is produced: A large jump at
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Figure 1-3: Free surface velocity profiles for the a-¢ phase transition in shock loaded iron.
Left: Experimental measurements by Barker and Hollenbach [5].

Right: Bruno—Vaynblat theoretical model, using the “rarefaction discontinuity” approx-
imation.

Each curve represents a record of the free surface velocity for one experiment, with the
numbers as assigned by Barker and Hollenbach to label their experiments. Only a few
representative samples of their measurements are displayed in these plots. In all the ex-
periments shown here the sample thickness and diameter are approximately 6 mm and
10 cm, respectively. In terms of the impactor velocity, the curves order naturally from
bottom (lowest velocity) to top (highest velocity), i.e.: as a function of increasing im-
pactor velocity, the experiments are ordered in the sequence 14, 1, 17, 6, and 9.

The vertical axis is the free surface velocity and the horizontal axis is time scaled by the
total thickness of the sample in each experiment, so that the horizontal axis in the plots
is an inverse velocity. Thus each wave signature appears at a position equal to the inverse
of its average velocity across the sample.

time/thickness ~ 0.2 sec/km.

e For intermediate impactor strengths (e.g.: experiments number 1, 17, and 6) two
additional waves are produced: A large jump at time/thickness =~ 0.2 sec/km
to a velocity of around 0.7 km/sec followed by another jump sometime after
time/thickness = 0.2 sec/km to the final asymptotic velocity value for each

curve.

The three-wave structure found by Bancroft et al. [2] is present in the experiments
numbered 1, 17, and 6. We note that these experiments correspond to intermediate

impactor strengths.
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The first wave, at time/thickness & 0.17 sec/km, causes a small jump in velocity
and is present in all the experimental curves. As explained before, this wave is known
to be a pressure-increasing shock wave traveling in elastic iron [2, 5]*. Because of
its relatively small size in relation to the other jumps and the fact that its origin is
well understood, it will be neglected during the work presented in this thesis. The
other much larger jumps in velocity are known to be due to the plastic response of
the iron and the presence of a phase transition. They will be the main focus of all
the subsequent mathematical modeling in this thesis.

We note that when the elastic precursor wave is neglected, the remaining free
surface velocity profiles can be described as possessing either a one wave or a two
wave structure. When referring to free surface velocity profiles with two waves, the
waves will be referred to as the first wave and the second wave. They will be ordered
by their time of arrival at the interface.

The type of phase transition discussed in this thesis also occurs in materials other
than iron. For instance, Erskine et al. [26] performed shock experiments similar
to those of Baker and Hollenbach with solid graphite, producing diamond as the
martensitic phase. Their experiments also produced free surface velocity plots with a
two wave structure for a certain range of impactor strengths (see figure 1-4). In these
experiments no switch from elastic to plastic response was observed, and no precursor
elastic “toe” can be seen in the measured curves.

In this thesis we will develop and study mathematical models for austenite—
martensite phase transitions, such as the ones in iron and in graphite-diamond. The
success of the models will be measured by how well they reproduce the free surface

velocity plots of Barker and Hollenbach, as given on the left in figure 1-3.

4Similar to many materials iron behaves elastically for low enough pressures; at higher pressures
it behaves plastically.
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Figure 1-4: Free surface profiles for impact stressed graphite. The vertical axis is the
free interface velocity. The horizontal axis is time. Left: Experimental measurements
by Erskine et al. [26]. Right: Bruno—Vaynblat theoretical model, using the “rarefaction
discontinuity” approximation.

1.3 Prior Theoretical Work

Prior continuum level theoretical work in the modeling of shock-induced martensitic
phase transformations relies heavily on the ideas of meta-stability and in the modeling
of the kinetics of the transformation process [8, 72].

In 1997, Vlodarchik and Trebinski [72] modeled phase changes in graphite, taking
great care to describe the various possible atomic configurations of the carbon as
stresses are applied. An argument is made claiming that the hexagonal ring structure
of the carbon atoms in graphite should deform by “puckering”. Puckering is defined
as an arrangement of carbon atoms where every other atom is displaced out of the
original plane of the hexagonal ring. Using these atomic configuration of puckering,
the compression of graphite is described by a series of steps in which the atoms, in
response to external pressure, move from one configuration to another. These atomic
rearrangements take place only after a mixture of graphite and diamond appears.
How exactly this mixture forms is unclear. From this point, the mixture is governed

by assumptions of local thermodynamical equilibrium. These authors describe the
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kinetics of further phase transformation with the expression:

P ap) =N A exp[

(1.1)

dt

—]A;:;p)} ,

where A denotes the mass fraction (from A = 0 for no martensite, to A = 1 for all
martensite), p is the pressure, \,, = A\, (p) is a target degree of transformation for
a given pressure,” Ag(p) is the height of the energy transformation barrier (assessed
on the basis of a proposed isotherm of graphite at pressure p), R is the ideal gas
constant, 7" is the temperature, and A is a constant.

Vlodarchik and Trebinski argue that the work involved in transforming the ma-
terial, i.e.: Ae(p), is stored in the thermal vibrations of the atoms prior to the trans-

formation. From this they obtain the following equation for Ae

/OT x(0) c,(0) do = Ae, (1.2)

where x(7T) is the fraction of the thermal energy stored in the atom’s vibrations in
the direction perpendicular to the hexagonal planes of the graphite. An estimate for

X(T') can be obtained using the Krumhansl and Brooks model [42], which yields:

1.5D(z.) — x. (€% — 1)7!

T) = 1.3
X(T) 1.5D(xe) — xc (€% — 1)~1 +3D(x,) — 224 (€% — 1)~ 17 (1:3)
where
2 [T s

D(z) = — d 1.4
@ = [ oy (1.4

with z, and z, defined by
.’L’C:Tpc/T, and xa:TDA/T. (15)

Finally, Tpc and T 4 are the Debye temperatures for vibrations in the two main direc-

tions in the crystalline structure. With these assumptions, plus continuum equations

SFor a detailed explanation of the choice of the function A, (p), see [72].
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describing the conservation of mass and momentum (similar to the ones we will use
in this thesis later on; see chapter 2), free surface velocity plots like those presented
in section 1.2 can be produced [72].

Boettger and Wallace’s [8] work also deals with the problem of martensitic phase
transformations. Their work involves metastable states between austenite and marten-
site. The transformation to the final equilibrium state is determined through the use
of a “relaxation time.” Their expression for the degree of transformation, analogous

to equation (1.1), is
dt T ’

(1.6)

where A\ again represents the degree of transformation, ), denotes the metastable
state towards which the material is relaxing, and 7 is a relaxation time, measuring
the speed at which the transformation takes place. The rest of their theory is similar
to that of Vlodarchik and Trebinski, described earlier in that the relaxation time 7 is
fit to each experimental curve.

Next we sketch some of the factors involved in determining the function A, (p, T),
above in (1.6). This determination involves knowing the Gibbs free energy, G, for
both the austenite and the martensite phases. These functions, in turn, follow from
the Helmholtz free energy, F', by the definition G = F 4 pv, where v = 1/p is the
specific volume. Boettger and Wallace propose that the Helmholtz free energy is

composed of four pieces, as follows:

F:q)()—{—FH—f—FA—f—FE, (17)

where @, is the static lattice potential, F'y is the quasi-harmonic phonon free en-
ergy, F4 is the an-harmonic contribution, and Ffg is the free energy due to thermal
excitation of electrons from their ground state. In Boettger and Wallace’s work a
functional form for each component of the Helmholtz free energy is proposed. Each
term involves constants that are approximately known in some way. As before, once
the formulation of the free energy is defined, free surface velocity profiles can be

computed. The constant 7 is chosen for each experiment, so that the computed free
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surface profiles match their experimental counterpart as closely as possible.

Both the Vlodarchik—Trebinski and the Boettger-Wallace models are character-
ized by the idea that it is possible for a mixture of phases to be present at some
locations in the sample during the experimental run. This mixture then “relaxes” to
some “optimal” mixture that depends on the local conditions. Mixture regions where
islands of one phase exist in a sea of another phase are notoriously hard to model
precisely in a continuum sense. As a consequence, both models depend on many
“effective” material constants and functions that are difficult to obtain. In fact, the
idea of a linear relaxation time, implicit in equations (1.1) and (1.6), was found [8] to
be insufficient to fully capture all the experimental curves presented by Barker and
Hollenbach [5] (see the left frame in figure 1-3). The authors concluded that some
sort, of nonlinear relaxation ought to be taking place inside the material, but did not
provide a form for it. How to choose this nonlinear relaxation function is entirely
unclear to this author, and a form has not been suggested by other authors. Further
theoretical and experimental work will certainly be needed to fully explain the free
surface profiles using these ideas.

To address these difficulties, in 1999 Bruno and Vaynblat proposed a new theo-
retical model that is much simpler than previous ones, and involves only well-known
and separately measurable material constants [13, 14]. The Bruno—Vaynblat model,
with a simplifying assumption they called the “rarefaction discontinuity approxima-
tion”, gives qualitatively and quantitatively correct results for both the iron and the
graphite-diamond experiments, see figures 1-3 and 1-4. In chapter 2 we provide a full
description of the Bruno—Vaynblat model. The mathematical background needed to
implement this model is developed in sections 2.1, 2.2 and 2.3, including the rarefac-
tion discontinuity approximation.

Unless otherwise stated, from now on: all references to a mathematical model
for austenite-martensite phase transitions in this thesis refer to the Bruno-Vaynblat
model. As a means of finishing this chapter we present a simple outline of the major

sections of this thesis.
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1.4 Summary of the Plan of this Thesis

Below we summarize the plan of this thesis to make navigation of its various parts
easier.

e In this chapter 1 (Introduction and Background) we describe the experiments

underpinning this work, as well as the theoretical work prior to the Bruno—

Vaynblat model.

e In chapter 2 (Bruno—Vaynblat Theory) we introduce the Bruno—Vaynblat model
and the solution of the Riemann problem, as well as the appropriate hyperbolic

conservation law theory, needed to understand the model.

e In chapter 3 (Bruno-Vaynblat Model without the Rarefaction Discontinuity Ap-
proximation) we
(a) assess the predictions and limitations of the Bruno—Vaynblat model (as im-
plemented by Bruno and Vaynblat);
(b) implement the model without the rarefaction discontinuity approximation;
(c) discuss the results of this implementation, including the various new types
of wave interactions that we observe; and
(d) compare the results with the experimental observations, and discuss ne-

glected physical effects whose inclusion could explain some of the discrepancies.

e In chapter 4 (Model Modifications) we consider modifications to the basic
Bruno—Vaynblat model, where physical effects that were neglected in the work
shown in chapters 1 and and 3 are studied (see item (d) in the description of
chapter 3 above). Thus
(a) reasons are given indicating that dissipation may be an important effect,
and a model incorporating dissipative effects is introduced. The problems in
implementing dissipative effects near the phase transition region are discussed,
and a numerical algorithm for doing so is proposed and implemented;

(b) the results of the implementation of the model with dissipation are com-
pared with the experiments. Since the amount of dissipation that occurs is

not a quantity for which we have independent measurements (because of the
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very large stresses involved), we give it the value that optimizes the fit between
experiment and theory. A discussion of the dissipation value obtained is pre-
sented;

(c) a second modification to the model, also studied, has to do with the sound
speed near the phase transition point. We argue that the equation of state is
not well known in this regime, and study the effects of local (basically, affecting
only the sound speed near the phase transition) modifications to the equation
of state; and

(d) the results of locally modifying the equation of state are compared with the

experimental observations.

e In chapter 5 (Characteristic Tracking Method) we develop a new numerical
method for solving one-dimensional hyperbolic systems of conservation laws
with phase transitions. This is the method used during the investigations re-
ported in chapter 3, and was developed because of the need for accurate calcu-
lations of the interactions of rarefaction waves with discontinuous waves (such

as shocks, contact discontinuities, and phase transitions).

e In chapter 6 (Conclusions) we discuss the results of our research, and the areas

that need further investigation.

e In appendix A (Lagrangian Formulation) we display various useful formulas for
the model equations in Lagrangian coordinates: characteristics and Riemann

invariant form, wave (shock and rarefaction) curves,® etc.
e In appendix B (Mie-Griineisen Equation of State) we discuss the equation of
state used for most of the investigations in this thesis.

e In appendix C (Conservation of Momentum Discretization) we present the de-

tails of the numerical discretization used for the dissipative model equations.

e In appendix D (Summary of the Interface Boundary Conditions used in the
Dissipative Code) we give the details of the numerical implementation of the

interface boundary conditions, for the model with dissipation.

6Needed in the solution of the Riemann problem.
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Chapter 2

Bruno—Vaynblat Theory

As mentioned in section 1.3, Bruno and Vaynblat proposed a new model for the shock
induced martensitic phase transformations observed in impact experiments. Below

we list the assumptions implicit in their model.

2.0.1 Fundamental Postulates

The Bruno—Vaynblat model is based on the following postulates:

1. Because the sample’s thickness is so much smaller than its diameter, the problem
can be formulated entirely in terms of one-dimensional wave propagation. This
assumes that all the waves generated at the lateral edges of the sample do
not greatly interfere with the bulk longitudinal motion during the course of
the experiment (the time interval during which the free surface velocities are

recorded). Prior models made similar assumptions, see [24].

2. Because of the large pressures involved in the a-e iron phase transformation
(around 13 GPa, or approximately 1/10-th of the pressure at the center of
the earth), the elastic properties of iron can be entirely neglected and only the
plastic response of the material is important [24]. This means that the stress
tensor can be taken as diagonal, and all the dynamic forcing attributed to a
scalar “pressure” function p, so that the equations of solid mechanics simplify

greatly. These simplified equations turn out to have the same form as the
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equations governing a compressible fluid flow see [22].

Remark 1 The yield stress for iron reported on in [43] (for tensile tests) was
approximately 0.1 GPa, the elastic precursor shock in the Barker and Hollen-
bach experiments brings the stress in the iron samples to around 1 GPa, well

beyond the elastic-plastic boundary, see [12, 20, 24].

. From the experimental evidence there is good reason to believe that a relation-
ship of the form p = p(v) provides a good approximation to the behavior in
each phase. Here p is the pressure and v is the specific volume, see appendix B.
We denote these empirical relationships by p”(v) for austenite and p™(v) for
martensite. In each phase the function p = p(v) is a convex smooth function,

with a negative derivative as required by thermodynamics.

. The transformation among phases takes place at infinite speed, when some
critical value of the pressure is reached. This implies that “continuum level”
mixture regions, containing both phases, are not possible. The critical pressures
will be denoted by pa, (T) for the forward transformation and pX (T) for the
reverse transformation. We note that this assumption is a limiting case of the
theories presented in section 1.3, where the material relaxes to either austenite
or martensite over a finite time 7. The Bruno-Vaynblat theory, therefore, corre-
sponds to the limit when 7 = 0 and A can only take the values 0 or 1. Because
there is no need to model the poorly understood details of the transformation

process, this theory is much simpler than the prior ones.

2.0.2 Mathematical Formulation

From assumptions 2 and 3 in subsection 2.0.1, the governing dynamical equations for

the Bruno—Vaynblat model reduce to the conservation of mass and momentum [22].

In an Eulerian frame of reference these are

Olouy+ Lo tn) =0, (1)

0 0
—p+—(pu) =0, and 5

ot o0x
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where p is the density, u is the particle velocity, p is the pressure, ¢ is the time, and x is
the Eulerian spatial position. An equivalent form, in a Lagrangian frame of reference
is

ov  Ou ou Op

E—a—g_o, and E#—ag—

0, (2.2)
where v = 1/p is the specific volume and & is the Lagrangian spatial coordinate,

related to the Eulerian coordinate = by

- / p(3,1) di | (2.3)

where xy = wo(t) is the Eulerian position of a fixed mass particle. From this last
equation it should be clear that the Lagrangian spatial coordinate physically repre-
sents the amount of mass between a reference particle zy and the current Eulerian
location z.

Here we will develop the theory in terms of the Eulerian coordinate system. A
similar development, in terms of the Lagrangian coordinate system, can be found in
appendix A.

From assumption number 4 of the Bruno-Vaynblat model (see subsection 2.0.1),

the empirical pressure function p = p(v) has the discontinuous form

A A
p*(v) forp < ply(T),
p(v) = o Mt (2.4)
p (V) fOI‘ p > pcrit (T) )

where we have included a temperature dependence of the critical pressures pA, (T)
and pM, (7). However, the experimental evidence suggests that this dependence is
quite weak [6, 36], so that a further simplification is introduced, and the temperature
dependence of the critical pressure will be neglected, see figure 2-3 (a) for a picture
of a typical equation of state. Thus we assume from now on that both pZ;, and pX,
are known constants. A detailed discussion of the specific functional forms of the
individual equations of state (p*(v) and p(v)), used for most of the calculations in

this thesis, is presented in appendix B.
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Remark 2 The Bruno—Vaynblat model has a relationship, to the models incorporat-
ing a detailed calculation of the phase transformation, similar to that of the Chapman—
Jouget to the ZND model in combustion theory [27]. There the reactant and the prod-
uct each have their own equation of state, with the Chapman-Jouget theory modeling
the reaction as instantaneous and the ZND theory modeling the details of the chemical

reactions involved.

When p = p(v) is a convex smooth function with negative derivative, the system
in (2.1) — equivalently, in (2.2) — is known as the p-System, and has been exten-
sively studied in the mathematical literature, see [65]. In the Bruno—Vaynblat theory,
because of the switch in the equation of state at the critical pressure, p is neither con-
vex nor continuous, and further assumptions are needed to have a complete theory.

These assumptions will be explained in the sections that follow.

2.1 The Continuous p-System

In this section we will consider the system of equations in (2.1) — equivalently, in (2.2)
— and assume that p = p(v) is a convex smooth function of the specific volume v, with
a negative derivative. These requirements will be weakened in later sections. It is well
known [65] that in this case the system of equations in (2.1) is a strictly hyperbolic
system of conservation laws — well-posed even for discontinuous solutions — provided
that the correct Entropy condition and Rankine-Hugoniot jump conditions are used
at the discontinuities (shocks). Next we summarize the most relevant (for our work

here) theoretical facts about these equations.

2.1.1 Fundamental Ideas

The characteristic form of the equations in (2.1) is given by

dp du dx
o TPy = 0 along F UG (2.5)
dp du dx
a + peg = 0 along prials +c, (2.6)
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d
where the sound speed ¢ > 0 is defined by ¢*> = d_p We will call the set of character-
o

istics given by i u — ¢, the C_ or 1-characteristics; while the characteristics
dx
dt
The equations can also be written in Riemann Invariant form as

given by = u + ¢ will be called the C'; or 2-characteristics.

@ =0 along d_:v =u—c
dr 0 alo d +
. = n — =

dt & w'TO

where s = u — l(p) is the left Riemann invariant (constant along each C_ char-
acteristic), 7 = u + [(p) is the right Riemann invariant (constant along each C,

characteristic), and I(p) is given by

P dp P e
l(p) = —:/—d, 2.8
= 0= e (28)

where p’ = p(v') is some fixed reference state. The Riemann invariants s and r will
play a major role in the numerical method developed in chapter 5.

Flow in which one of the Riemann invariants is identically constant is called a sim-
ple wave. In a simple wave the characteristics that correspond to the other Riemann
invariant are straight lines. We will call a simple wave right-facing or a right simple
wave if the fluid particles (traveling with velocity u) enter the simple wave region from
the right; equivalently: when s is identically constant on the wave. Similarly, if the
fluid particles enter the simple wave from the left (i.e.: when 7 is identically constant
on the wave), we will call the wave left-facing or a left simple wave. Furthermore,
we will call a simple wave expansive or rarefying (respectively: compressive), if the
pressure and density on a fluid parcel decrease (respectively: increase) as the parti-
cles cross the simple wave region. This corresponds to the characteristics carrying
the simple wave diverging (respectively: converging). An extreme case of this occurs
when the characteristics diverge (respectively: converge) from a single point, in which
case we talk about a rarefaction fan (respectively: a compression fan.) Figure 2-1

shows an example of a right-facing expansive simple wave on the left frame, and an
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Figure 2-1: Examples of simple waves, with a typical path for a fluid particle shown
(thick line). Left: Simple expansive wave on the C characteristics (i.e.: a right simple
expansive wave). Right: Simple compressive wave on the C' characteristics (i.e.: a left
simple compressive wave). In each case the head characteristic (the first characteristic
in the simple wave that a particle crosses as it enters the simple wave flow), the tail
characteristic (the last characteristic in the simple wave that a particle crosses as it leaves
the simple wave flow), and a typical characteristic are shown.

example of a left-facing compressive simple wave on the right frame.

The solutions to the system of equations in (2.1) will in general develop disconti-
nuities in a finite time, even for smooth initial data. These discontinuities must satisfy
the Rankine-Hugoniot jump conditions and the Entropy condition, whose form we
display below using Eulerian coordinates. An entirely analogous formulation can also
be made using Lagrangian coordinates.

The Rankine—Hugoniot jump conditions are given by
—Selpl+[pul =0, and  —Sglpul+ [pu’+p] =0, (2.9)

where Sg is the speed of the discontinuity in Eulerian coordinates and the brackets
denote the jump in the enclosed quantity across the shock. Specifically: [Q] = Q'—Q",
where Q' (respectively Q) is the limiting value of Q — from the left (respectively,
from the right) — at the discontinuity.

The Entropy condition states that the pressure and density must increase as a
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fluid particle crosses the shock. For a right-facing shock or right shock, defined by
the fact that the fluid enters the shock from the right, the Entropy condition in

Eulerian coordinates is equivalent to:
u 4" < Sp<ut +¢, (2.10)

where the superscripts [ and r are as above, in the definition of the bracket notation
used in equation (2.9). In other words, the C characteristics converge on the shock.
Similarly, for a left-facing shock or left shock, the Entropy condition in Eulerian

coordinates is equivalent to:

u —c < Sp<u—d, (2.11)

so that the the C_ characteristics converge on the shock.
The numerical codes we use in this thesis are of the Godunov type, and are based
on having a solver for the Riemann Problem. The Riemann problem for the equations

in (2.1) is the initial value problem with “step” initial values. Namely:

pl forz < x, ul for z < zg,

p(z,0) = and wu(z,0) = (2.12)
p" forxz >z, u" for x > xy,
where x, is the position of the initial discontinuity, and the initial left (p', u!) and
right (p”, u") states are constant.

The general solution to the Riemann problem for the equations in (2.1) is well
known. It is self-similar (depends on ¢ = z/t only) and consists of two waves sepa-
rating three constant states:

e the left state, valid for { < (,

e the middle state, valid for (,; < ¢ < Gy, and

e the right state, valid for {, < (,
where (; < Gu < (mr < (. The right wave, on (,,, < ¢ < (., belongs to the C

characteristic family, and it can either be a right shock (in which case (,, = ()
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or a right rarefaction fan (in which case (,, and ¢, correspond to the tail and head,
respectively, of the fan). The situation for the left wave (on (; < ¢ < (,,y and belonging
to the C'_ characteristic family) is similar. Figure 2-2 shows a space—time diagram
with an example of one of the four possible cases for the solution of a Riemann
problem. In this case the solution involves a left—facing C_ rarefaction fan and a

right—facing C'; shock.

1-rarefaction t 2-shock
Fm
U
Pm
e
ity
Be
Figure 2-2: Space-time diagram for a typical solution of the Riemann problem, for the
continuous convex p-System (system in (2.1), with p = p(v) smooth, convex, with a

negative derivative). In this example the C_ or 1-wave is a rarefaction and the C or
2-wave is a shock.

The solution to the Riemann problem in (2.12) is constructed as follows: First:
two solution wave curves in phase space! are constructed, one corresponding to each
of the states in the initial values. The left wave curve consists of all the possible
states that can be connected to the left state (p', u') by either a 1-rarefaction fan or a
1-shock. The right wave curve consists of all the possible states that can be connected
to the right state (p", u”) by either a 2-rarefaction fan or a 2-shock. Second: The
intersection of these two curves is found. The middle state in the solution to the
Riemann problem is then given by this intersection, say (p™, u™). The two waves in
the solution to the Riemann problem are given by the corresponding waves in each

curve, connecting (p™, u™) to either (p!, u') or (p", u").

Here we mean by phase space the set of all the possible values that the solution can take at any
point. A point in phase space is determined by a velocity and a density, or a velocity and a pressure,
etc.
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Notice the following about the general construction of the solution to the Riemann

problem:

1. For a given initial state, say (p, u) — i.e.: either of (p', u!) or (p", u") above
— two wave curves can be constructed: a 1-wave curve involving 1-shocks or
1-rarefactions and a 2-wave curve involving 2-shocks or 2-rarefactions. The two
are related by the reflection symmetry of the equations (r — —z and v — —u
leaves the equations invariant), so that the construction of only one of the wave

curves needs to be described.

2. Each wave curve is composed of two branches: the shock or Hugoniot branch
(states where the connection is by a shock wave), and the rarefaction branch

(states where the connection is by a rarefaction wave).

In the next subsection we describe the construction of the wave curves for the
case of the convex, continuous p-system. Later, in section 2.2, we will see how this
construction must be modified for the case when a phase transition is present, and

p = p(v) is no longer smooth or convex.

2.1.2 Shock and Rarefaction Wave Curves

In the derivation of wave curves below we start by assuming that we know the state
ahead of the wave,> ¥ = (p%, u®), and then we find the states that can be connected
to the given state by either a shock or a rarefaction fan. We parameterize the curves
using the pressure behind the wave, p?. Notice that, for both shocks and rarefaction
waves, the state behind the wave must satisfy the equation of state p® = p(v®). Thus:
if we know the pressure behind the wave, we also know its specific volume, from
vP = p 1(pP) — this rather trivial observation greatly simplifies the procedure for

calculating the wave curves.?

2For a right (respectively: left) wave, the state ahead is the state to the right (respectively: left)
of the wave.

3The (p, v) projections of the wave curves (shock and rarefaction) are always given by the p = p(v)
relationship.
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The equations for the shock branches of the wave curves follow upon manipulation

of the equations in (2.9), which yields:
u’ = u®+ /—[v][p], and Sg=u*Fv,|—-= (2.13)

where [v] = v*—v® > 0, [p] = p®—p® < 0 (the inequalities here follow from the entropy
condition), and the upper (respectively: lower) signs in the square roots must be used
for a right (respectively: left) wave.

The equations for the rarefaction branch of the wave curves follow from equa-
tions (2.7) and (2.8), upon implementing the condition that one of the invariants is

constant across the wave. Thus we obtain for the velocity:

pb dp dp d[)
b a
— ht — o _ ¥ 214
U =1u :F/pa = where c=1|7=Vy/ , (2.14)

and the upper (respectively: lower) sign must be used for a right (respectively: left)
wave. Notice the analogy between the formula for the shock speed in (2.13), and
the formula for the characteristic speed (corresponding to the nonconstant Riemann
invariant) in the rarefaction wave in (2.14), namely: u® 4+ ¢* — which is the basis for
the rarefaction discontinuity approximation, introduced later in subsection 2.3.1.

To summarize: given ¥.%, p°, and v°, from the first equation in (2.13) — or (2.14) —
we can obtain the particle velocity behind a shock — or a rarefaction fan. Therefore,
the complete state behind the wave is known once the pressure behind the wave is
specified, so that we have a complete procedure for the determination of the shock

and the rarefaction branches of the wave curves.

2.2 The Non-Continuous p-System

In this section we will discuss the differences that arise in the solution to the Riemann
problem when a non-convex, non-continuous, p = p(v) relationship — such as the one

given by equation (2.4) — is used. The left frame in figure 2-3 shows a typical plot
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for a p = p(v) relationship of the type we will consider here.

2.2.1 Riemann Problem Solution

As in the standard case for the p-System, the solution of the Riemann problem
consists of three constant states separated by two self-similar waves. These two waves
are a left-facing 1-wave and a right-facing 2-wave. Each wave can be either a single
rarefaction fan or a single shock front, or it can be a generalized wave: a group of
several elementary self-similar waves that belong to the same characteristic family [54].
The possibility of generalized waves distinguishes the Riemann problem for materials
with equation of state given by equation (2.4) from the standard Riemann problem —
where the two waves are always either a rarefaction fan or a shock wave.

When the 1- and 2-wave curves are known, the Riemann problem under consider-
ation is then solved in the same manner as in standard situations, i.e. the intersection
of these two wave curves gives the middle state and the path to this intersection
along the wave curves gives the left-facing and right-facing waves. Thus, the solution
of the Riemann problem is reduced to construction of wave curves. Remember that
a wave curve is a generalization of the shock and rarefaction curves to the case where
generalized waves are possible [54].

A contact discontinuity is not a possible wave type in the case when p(v) is a
continuous convex function of v. Here, however, in the particular case of a Riemann
problem involving two different materials or two different phases a contact discon-
tinuity is possible. In these cases the solution to the Riemann problem consists of
as before a left-facing wave and a right-facing wave but separated now by a contact

moving at the velocity of the particles in the middle state.

2.2.2 Generalized Wave Curves

Because of the reflectional invariance of equations (2.1), in this section we restrict
attention to right-facing waves. The left-facing wave curve for a given initial state

3% is the reflection of the right-facing wave curve for the same initial state through
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Figure 2-3: Compression branch of the austenite—centered wave curve. The projections
of the wave curve are given by the thick solid lines. The thin dashed line is the Rayleigh
line. Left (a): Projection onto the (v, p)-plane. Right (b): Projection onto the

(u, p)—plane.

the plane v = u®. Also because of the Galilean invariance of equations (2.1) we will

assume the velocity ahead of the wave to be zero, u® = 0.

2.2.3 Austenitic Initial State

In this subsection we construct the wave curves for austenitic initial states. The
expansion branch (p’ < p®) has a very simple structure: it is a regular rarefaction
curve discussed in subsection 2.1.2. Thus we focus on the compression branch (p® >

p*), which is more complex: it consists of three different sub-branches.

Austenitic States and Curves

1. When the pressure behind the wave is below the critical pressure of austenite
(p® < pd,), this portion of the wave curve is the same as the standard shock

curve discussed in subsection 2.1.2, (see figure 2-4 (a)).

2. For pressures behind the wave greater than the critical pressure (p® > pa;,), the
state after this wave must be martensite and a shock cannot be used to connect

the two states or else the entropy condition (2.10) will not be met. The correct
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Figure 2-4: Space—time representations of right waves connecting the initial state 3¢ with
states 2 from the compression branch of the austenite—centered 3—-wave curve. From left
to right, the state X.° belongs to: (a) The first compression sub-branch; (b) The second
compression sub-branch; and (c) The third compression sub-branch. The trajectories of
discontinuity fronts are represented by thick lines and the C, characteristics by thin lines.

way to resolve this difficulty is to split the jump to p® into two pieces, a jump
to the critical state pZ;, followed by another jump to the pressure p®. This is an
example of a split wave. The first jump to the critical pressure is simply a shock
whose final state corresponds to the critical pressure of austenite. The second

jump to the martensitic branch of the equation of state is a forward critical

phase transformation wave, (see figure 2-4 (b)).

3. For pressures greater than a special value (p® > pgoun) again the entropy condi-
tion is met. For pressures in this range the state ahead and behind are connected

by a single forward phase transformation wave, (see figure 2-4 (c)).

2.2.4 Martensitic Initial State

In this section we describe the wave curves for martensitic initial states. In this case
the compression branch (p® > p?) has a very simple structure: it is a regular shock
curve discussed in subsection 2.1.2. Thus, we may focus on the more interesting
branch, the expansion branch, which displays more complexity: it consists of three

different sub-branches.
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Figure 2-5: Expansion branch of the martensite—centered wave curve. The projections
of the wave curve are given by the thick solid lines. The thin dashed line is the Rayleigh
line. Left (a): Projection onto the (v, p)-plane. Right (b): Projection onto the

(u, p)—plane.

Martensitic States and Curves

1. When the pressure behind the wave is above the critical pressure of martensite
(p® > pML.), this portion of the wave curve is the same as the standard rarefaction

wave curve discussed in subsection 2.1.2, (see figure 2-6 (a)).

2. For pressures behind the wave below the critical pressure of martensite (p® <
pa.), the state after this wave must be austenite. The correct way to connect
these two waves is again through a split wave. The jump to p® is split into two
transitions. The first transition corresponds to a rarefaction fan from the initial
state to the critical state for martensite. The second transition corresponds to
a backwards critical phase transformation, a shock like wave from the critical
pressure of martensite to the final state on the austenitic branch. This is another

example of a split wave, (see figure 2-6 (b)).

3. For pressures below a special value (p® < pyn) again the type of wave changes.
In this case the transition to the final pressure p® is broken into three transi-
tions. The first transition involves a rarefaction fan to the critical pressure of

martensite. The second component involves a backwards phase transformation
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Figure 2-6: Space-time representations of right waves connecting the initial state ¢
with states ° from the expansion branch of the martensite—centered right wave curve.
From left to right, the state >° belongs to: (a) The first expansion sub-branch; (b) The
second expansion sub-branch; and (c) The third expansion sub-branch. The trajectories
of discontinuity fronts are represented by thick lines and the C'. characteristics by thin
lines.

front to this limiting pressure and the third component involves a rarefaction

fan in austenite to the final state, (see figure 2-6 (c)).

2.2.5 Remarks on the Riemann Problem

For a material characterized by the equation of state (2.4), the specifics of the Rie-
mann problem stem from the peculiarities of the corresponding wave curves as con-
structed in subsection 2.2.2. The following properties of these wave curves play a

crucial role in the solution of the Riemann problem.

1. The wave curves consist of several sub-branches; the analytical descriptions of

which are different for each sub-branch.

2. A given sub-branch is always either a shock curve or a rarefaction curve; however
the state at which this shock or rarefaction curve is centered is not necessarily

the state at which the entire wave curve is centered.

3. Although the curves themselves in the (v, p,u)-space are discontinuous?, their

projections onto the (p,u)-plane are continuous piece-wise smooth, monotonic

4The specific volume vP jumps at v® = vA, on an austenite-centered curve and at v® = v, on

a martensite-centered curve; see figures 2-3 (a) and 2-5 (a).
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function. The left-facing wave curves are monotonically decreasing and the
right-facing wave curves are monotonically increasing. Both curves are defined
on the infinite intervals —oo < u < 400 and 0 < p < +o00; see figures 2-3 (b)
and 2-5 (b).

Property 3 immediately implies that the intersection of any two wave curves of
the opposite families exists and is unique; thus, there exists one and only one solution
of the Riemann problem. It then follows from property 2 that the Riemann problems
considered here may be solved in a manner similar to that encountered in standard

cases.

2.3 Initial Value Problems

In the experiments of section 1.2, the problem starting at the exact instant of time
when the impactor and the target collide, can be modeled by a Riemann problem. In
this Riemann problem the left state is given by (p;, w;) = (0,us) and the right state
is given by (pr,u,) = (0,0), where u; is the velocity of the flyer, and we approximate
atmospheric pressure as zero based on the extreme pressures experienced in the sample
during the experimental runs. This Riemann problem can be solved, and the flow field
evolved, for a small time forward: up until the first wave interaction occurs. If the two
waves that interact next are “thin” (either a shock, a transformation front or a contact
discontinuity®) then the collision can be resolved by solving another Riemann problem
at the point of their collision. In fact interactions between only one-dimensional thin
discontinuities (shocks, transformation fronts and contacts) require only the solution
of Riemann problems, and as long as these are the only types of waves present, the flow
can be evolved forward using the solution of Riemann problems. It is in the production
of a continuous wave, like a rarefaction wave, where the further solution of the flow
using only a Riemann solver is limited. Interactions involving continuous rarefaction

waves and discontinuities, for example, typically require full numerical simulations

5In this system a contact discontinuity arises at the boundary between two phases only. For
example at the iron vacuum boundary.
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to resolve, and one cannot a priori using only a small number of Riemann solutions
continue the flow to a desired point in time. If, however, the rarefaction waves found
are sufficiently weak, they may be accurately approximated by discontinuities, and a
Riemann solver is all that is needed.

In order to avoid having to do a full numerical simulation of the impact prob-
lem, Bruno and Vaynblat numerically solved the flow problem using the simplifying
assumption of weak rarefaction fans. This approximation, called the rarefaction dis-

continuity approrimation, is described below.

2.3.1 Rarefaction Discontinuity Approximation

The assumption of weak waves — where the wave strength is measured by any of
the three quantities [p]/p® or [v]/v® or [u]/v*C?* — allows rarefaction fans to be ap-
proximated by discontinuities, hereafter called rarefaction discontinuities®. When the
physical solution requires a rarefaction fan, a discontinuity is inserted carrying the
same jump as the original fan and moving at a speed comparable with the two fan
edges. As discussed above, under such an approximation all wave interactions can be
resolved, using only a Riemann solver. A validation of this approximation procedure,
can be found in [18]. In particular, it follows from [18, p. 156] that the errors in
replacing a true rarefaction fan with a discontinuity are of the third order in the wave

strength.

Remark 3 Historically rarefaction discontinuity approximations of this type have
been used in many contexts. In the solid dynamics community, a special case of this
approximation called — the “free surface approximation” — has been widely used in
studies of rarefaction fans arising from the reflection of shocks at free surfaces [76].
A detailed treatment of the degree to which the free surface approrimation is valid
can be found in [74]. The first explicit use of the “general” rarefaction discontinuity

approzimation in a Riemann solver can be attributed to [15]. A detailed discussion

6Here again [Q] represents the jump in @, see subsection 2.1.2.
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of a Riemann solver in which fans are approrimated by discontinuities can be found

in [23].

In a typical experiment the impact on the target induces one or two discontinuous
propagating fronts in the target and one or two discontinuous propagating fronts
in the flyer (see the compressive sub-branches of the austenitic centered initial state,
subsection 2.2.3). These wave patterns account for the initial stages of the experiment,
up to the time when the leading wave reaches a material boundary — such as the
free surface in the experiments of [5]. For later times, however, the wave structure
inside the impactor-flyer system is more complicated. It includes all waves reflected
from material boundaries, any secondary waves born in interaction of reflected and
incoming waves, etc, so that as time evolves, many waves are generated through
reflections and interactions.

If in accordance to the rarefaction discontinuity approximation every wave pro-
duced by the Riemann solver is approximated by a discontinuity, then every state in
the flow diagram is constant, and correspondingly so is every wave velocity. A great
simplification arises in computing the evolution of the flow profile. At any given time
we can compute the pair of waves that intersects next, by simply comparing, in turn,
each pair of waves and recording the specific pair that intersects first. From this point
we can continue to evolve the flow by solving the Riemann problem that results from
the collision of the two discontinuous waves. By solving one Riemann problem at a
time in this manner one can move the flow forward in time, from any given initial
condition of constant states.

Bruno and Vaynblat implemented a numerical code incorporating the rarefaction
discontinuity approximation in [13]. The results of the numerical predictions of the
free surface velocities were presented in section 1.2. The results for the a-¢ iron phase
transformation, are presented in figure 1-3 (page 18), and for the graphite-diamond
phase transition presented in figure 1-4 (page 20).

In the next chapter we will discuss how well the rarefaction discontinuity ap-
proximation predicts the experimentally observed free surface plots and analyze the

experimental and theoretical data sets in greater detail. Further into this thesis, the
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discrepancies between the model and the experiments will be considered, and modi-
fications to the model including physical effects neglected in the original formulation

by Bruno and Vaynblat will be introduced and studied.
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Chapter 3

Bruno-Vaynblat Model without the
Rarefaction Discontinuity

Approximation

The plan of this chapter is as follows:

e In section 3.1 (Assessment of the Discontinuous Bruno-Vaynblat Model) we
asses the predictions of the Bruno—Vaynblat model as implemented by Bruno
and Vaynblat. The degree to which it fits the experimental data is analyzed

and possible causes for the disagreements are proposed.

e In section 3.2 (Full Bruno-Vaynblat Model, Including Fans) the Bruno—Vaynblat
model is implemented in full, without the rarefaction discontinuity approxima-
tion. The results of this implementation, including several new types of wave
interactions that are observed in the numerical runs, are discussed. The predic-
tions of the full model are compared with the experiments, and the improve-
ments (relative to the earlier partial implementation by Bruno and Vaynblat)

are discussed, as well as the remaining discrepancies.

e In section 3.3 (Additional Physical Effects) we discuss several physical effects
neglected by the Bruno—Vaynblat model which may be responsible for the rel-
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atively small discrepancies with the experimental data. In the chapters that

follow this one, we propose and study ways to add two of these effects.

3.1 Assessment of the Discontinuous Bruno-Vaynblat

Model

When one looks at the results obtained with the rarefaction discontinuity approxi-
mation, one cannot help but be amazed by the agreement with experiment. In these
impact experiments the pressure jump the material experiences are on the order of
10° Pa. At these large pressures the rarefaction waves can hardly be considered weak.
Thus it is entirely possible that the rarefaction wave approximation is loosing some
important feature of the problem. Omne of the purposes of the work done by this
author is to go beyond this approximation and learn what features of the free surface
profiles are dependent on it. Therefore, in the hopes of further improving the results
of Bruno and Vaynblat, in this section we concentrate on the qualitative disagree-
ments, between their theoretical curves and the experimental ones. The observations
made here will then form the basis for the modifications made by this author in later
sections. The two sets of curves, shown in figure 1-3 (page 18) differ in at least the

following fundamental points:

e The rarefaction discontinuity approximation produces free surface velocity pro-
files that are “too steep”. The experimental profiles numbered 1 and 17, have a
steep, but finite slope (representing the increase in velocity achieved during the
second wave). The predictions of the rarefaction discontinuity approximation,
however, give infinite rise times for the second wave in each experiment. The
experimental curve numbered 1 has the most shallow rise time for the second

wave, and correspondingly the worst match with theory.

e The rarefaction discontinuity approximation produces corners that are “too
sharp”. The experimental profiles numbered 17 and 6 have smooth transitions

between the jump accompanying the second wave and the limiting asymptotic
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velocity each assumes. The rarefaction discontinuity approximation, however,

gives sharp angular corners at these locations on the graphs.

e For long times the rarefaction discontinuity approximation predicts a constant
asymptotic value of free surface velocity. Many of the experimental curves have

free surface velocities, however, are not constant for large values of time.

e The initial rise of the first wave in the rarefaction discontinuity plots are not
prefixed by a tiny “toe” around the Time/Thickness of 0.2 s/km. In the exper-
imental plots the first jump in free surface velocity is preceded by a relatively
small jump before the Time/Thickness of 0.2 s/km, that is not present in the
theoretical plots. We note here that it is believed that this “toe” is caused by
elastic effects see, section 1.2, while the remaining curves are produced by the
plastic response of iron. It is only the waves propagation occurring in the plastic

iron, that is modeled and all approximations will neglect this toe.

The approach taken for the remainder of this thesis is to keep the basis of the
Bruno-Vaynblat theory of martensitic phase transformations but to add new effects
in a hope of removing some or all of the disagreements mentioned above. It is felt
that the disagreement with respect to the slopes of the free surface plots, (first item
mentioned), is the most important of all affects to try and capture. One obvious
point that would need to be introduced into the theory if we are to hope for better

agreement is:
A smoothing effect had to be incorporated.

As an aside, it is not surprising that the free surface plots constructed out of discon-
tinuities should give rise to very “sharp” and angular results. The very components
that the solution is built from have this property. From the results shown in figure 1-3,
created with the rarefaction discontinuity approximation, it seemed obvious that the
first attempt at improving the model should be that of removing the approximation

and evaluating numerically the full equations.
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To fully resolve the rarefaction fans, two numerical schemes were implemented.
These codes enabled the study, in a controlled environment, of the effects that in-

cluding fans have on the free surface velocity plots.

3.2 Full Bruno-Vaynblat Model, Including Fans

In this section we present predictions that the full Bruno-Vaynblat theory gives includ-
ing rarefaction fans in the different impact regimes corresponding to the experimental
setups of Barker and Hollenbach [5]. The complete numerical flows, presented below,

were constructed using two numerical schemes:

1. A Godunov type initial value solver.

2. A new numerical scheme, called the Discontinuity Tracking Method, developed

in the course of working on this problem, see chapter 5.

Both numerical schemes give the same results and we present all plots using the
discontinuity tracking method as it is much better at resolving the features of the
flow. The qualitative predictions, presented here, are illustrated with figures which
resulted from numerical simulations, utilizing actual material constants — obtained

as indicated in Appendix B.

x=l

Figure 3-1: A cartoon of the impact experiments. The origin of the (z,t)-diagrams
is shown.

The following key is helpful in interpreting the (z,t)-plots:
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1. A simple cartoon showing the location of the space time origin and the first

Riemann problem solved is shown in figure 3-1.
2. Shocks are printed using a thick solid black line.
3. Forward transformation fronts are printed using a thick dotted black line.
4. Contact discontinuities are printed using a thick dot-dashed black line.
5. Backwards transformation fronts are printed using a thick long dashed line.

6. A few sample characteristics are printed using thin gray lines. More will be said

about these numerical waves in chapter 5.

7. Constant state regions are printed in pure white.

3.2.1 Three Qualitative Regimes

In the experiments reported on in [5], both the target and the impactor were made of
pure iron. The monitored interface was open to the air and for all practical purposes
unconstrained. We see from the experimental pictures, presented in section 1.2, that
different flyer velocities, uys, can give rise to qualitatively different wave patterns. In
this section we discuss some of the wave patterns that are achievable; in the context
of the full Bruno-Vaynblat model. The results presented here motivate and explain
many of the improvements made in later sections.

We begin by considering the initial configuration X(x,¢;) of states at the impact

time ¢ = t1, for which we use the following notation:

¥, forzx<ump,
Y(z,ty) = Eg, forrz; <z <z + L, (3.1)
yVee - forx; +L <z,

where 1 is the position of the interface between the target and the impactor at the
impact time, ¢, and L is the initial length of the target. The initial state of the

impactor is iron, in the austenitic phase, at zero pressure, and moving at a speed u;.
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The initial state of the target is the same as that of the impactor but moving at a

velocity of 0. From this information we can write the initial states of the two iron
pieces and the vacuum state as
$Va© = (0,0) . (3.2)

Eé:(O,Uf), 2(1;:(0,0),

This information and equation (3.1) define the first Riemann problem (RP;), centered

at (z1,t,) with left state 3! and right state ¥, see figure 3-2.
The collision between the flyer and the target will impart a compressive force on

the sample and impactor. The 1-st Riemann problem will have different types of

solutions depending on the magnitude of us (see the discussion of the austenitic cen-

tered wave curve in subsection 2.2.3). Here we classify into three different parameter

regimes the different qualitative wave profiles that result.
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Figure 3-2: An impact in regime A. (x,t)-diagrams for the a-¢ iron phase transition.
Horizontal axis is the spatial coordinate x scaled by the sample thickness. The vertical

axis is time ¢ scaled by the sample thickness.

Regime A: In this regime the compressive force from the flyer is not large enough

to produce a phase transition and upon impact, only one discontinuity (a shock)
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develops in each of the target and flyer. A typical (z,t)-diagram of this regime is
depicted in figure 3-2. The solution to Riemann problem 1 (labeled with a 1 in
figure 3-2) consists of three constant austenitic states: the initial left state X}, a
constant middle state 3} and the initial right state ©I, separated by two waves: a
1-shock front Wl and a 2-shock front WE.

The solution of the full problem coincides with the solution of this Riemann prob-
lem up until the time, ¢, when the discontinuity reaches the free surface. To continue
the solution of the impact problem beyond this time, one needs to solve a second Rie-

mann problem (RP,), centered at (x9,t2) the initial data of which is given by
=M and XF=3xVe, (3.3)

The solution to the second Riemann problem consists of a left-facing rarefaction fan,
Wk, that is reflected back into the sample. The reflected fan lowers the pressure back
down to atmospheric. This fan will appear in all the cases we consider and will play
an important role in section 4.3. Because of its prominence in the sections that follow
we will name it as: the reflected rarefaction fan. We see the free surface is represented
in this Riemann problem as a contact discontinuity.

Regime B: Regime B is different from regimes A and C in that depending on the
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Figure 3-3: (z,t)-diagrams for the a-e iron phase transformation. (a) An impact in
sub-regime B.1. (b) An enlargement of region (a) showing details of the interaction
regions 1...4.
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magnitude of the impact velocity uy, three different sub-regimes may occur. These
three sub-regimes differ qualitatively in the way that the forward phase transformation
wave “decays” into a backwards phase transformation wave. We will call these sub-
regimes B.1, B.2, and B.3 and discuss their properties here.

In figures presented in this subsection we have labeled with numbers, the locations
the sequence of wave interactions that take place as the flow evolves. We mention that
in the rarefaction discontinuity approximation each interaction would occur at a point
as all the waves colliding are discontinuities. When we consider the full equations and
fully resolve rarefaction fans these point interactions “smear” and become interactions
of simple waves and discontinuities. Typical (x,t)-diagrams associated with the first
sub-regime B.1 are depicted in figure 3-3, those for a typical B.2 in figure 3-4 and
those for typical B.3 in figure 3-5.

The plots for all three regimes give qualitatively identical results for the first two
Riemann problems. The first Riemann problem, in contrast to regime A, produces two
split waves W, and W, (see figure 3-3 (a)). Each split wave consists of a precursor
shock and a forward phase transformation front separated by a critical austenitic
state. The middle state ¥¥ is now martensitic.

As in regime A the next Riemann problem occurs when the precursor shock strikes
the free surface. This Riemann problem, as in regime A, produces a left-facing rar-
efaction fan. The next wave interaction takes place when the head of the reflected fan
meets the right-facing phase transition (labeled with a 3 in figure 3-3). The contin-
uation of the flow for times beyond this point requires the numerical solution of the
interaction of a rarefaction fan and a phase transformation wave. Qualitatively after
this wave interaction has completed, the emerging picture is similar to what happens
in the rarefaction discontinuity approximation [14] in that, three waves propagate
away from the collision zone: a left-facing expansive simple wave, a middle wave
(the type of which depends on the sub-regime), and a right-facing compressive simple
wave.

We can see in all of the sub-regimes an effect of the phase transformation W is

to “reflect” the reflected rarefaction fan born at the second Riemann problem back
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towards the free surface. This reflection takes place at the interaction numbered 3
in all of the regime B sub-regime’s. This reflected wave eventually reaches the free
surface affects the free surface velocity. This is the mathematical origin for the second
jump seen in the free surface plots.

For a complete discussion of the interaction that takes place when a phase trans-

formations and a simple waves collide (see subsection 3.2.2).

e Regime B.1: In this sub-regime, after the compressive austenite-to-martensite

0.28

N 7
4
(ay\\\ f
L ¢
\\\ ;/
0.255 | M / 6
‘ ’
~—~ \% i,
£ v5 4
7 / 4
m I} )
I g 7 4 i
= ii ]
¢ /
[
é /
[J
0.205 - 3 / 1
/
//i 2
[}
LA !
018 L / L | L
0.85 0.9 0.95 1 1.05 1.1
x/L

Figure 3-4: An impact in sub-regime B.2. (z,t)-diagrams for the a-¢ iron phase
transition.

transformation front meets the reflected rarefaction wave a “reverse-transformation
tendency” prevails: the right-facing transition front is sufficiently weak for the
reverse transformation — from martensite to austenite — to be initiated in the
interaction of the rarefaction fan and the phase transformation wave. We see
that in this sub-regime the third wave interaction produces a left-facing simple
wave for the left wave, a backwards phase transformation wave as a middle wave,

and a right-facing simple wave as the right wave.

e Regime B.2: In this sub-regime, after the compressive austenite-to-martensite
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Figure 3-5: An impact in sub-regime B.3. (z,t)-diagrams for the a-e iron phase
transition.

transformation front meets the reflected rarefaction wave the “direct” and “re-
verse” transformation tendencies balance each other. The right-facing transfor-
mation front is not sufficiently weak for the reverse transformation to occur as
it does in regime B.1. We see that in this sub-regime the third wave interaction
produces a left-facing simple wave for the left wave, a contact discontinuity as
a middle wave, and a right-facing simple wave as the right wave. The contact
discontinuity travels until it is further weakened by the simple wave arising
from the interaction labeled 4 and becomes a backwards transformation front

at location 5.

e Regime B.3: In this sub-regime, after the compressive austenite-to-martensite
transformation front meets the reflected rarefaction wave a “direct-transformation
tendency” prevails. The right-facing transformation front is sufficiently strong
to sustain the interaction of the rarefaction fan beyond the collision point. We
see that in this sub-regime the third wave interaction produces a left-facing
simple wave for the left wave, a right-facing phase transformation as a middle

wave, and a right-facing simple wave as the right wave. We note that the right-
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Figure 3-6: An impact in regime C. (z, t)-diagrams for a-¢ phase transition in iron.

facing simple wave compresses the iron to its critical pressure so that the critical

condition is maintained ahead of the forward phase transformation wave.

Regime C: In this case the impact is strong enough to create a single forward
transformation front propagating into the target and flyer after impact. The middle
state in this case is martensite. A typical (z,t)-diagram is depicted in figure 3-6.

The second Riemann problem arises as the right-facing forward transformation
front W[ reaches the free-surface. We point out that in its solution the left-facing
wave WL is a rarefying split-wave — composed of a precursor rarefaction wave followed
by a transformation front, changing the phase of the sample from martensite back to
austenite.

Notice that, up to this point, we have not included a proper description of how
the forward transformation front becomes a backwards transformation front under the
influence of a simple wave. This is an important point and we present a discussion in

the next subsection.
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3.2.2 Simple Wave-Transformation Front Interactions

In this section we describe the sequence of events that take place when a forward
transformation front decays into a backwards transformation front under the influ-
ence of rarefying simple wave. This decay only takes place when the initial Riemann
problem produces split waves; a precursor shock followed by a forward phase trans-
formation wave, as in regime B (see subsection 3.2.1).

In this regime, the first Riemann problem gives rise to a phase transformation
wave traveling behind a precursor shock. The precursor raises the pressure from
atmospheric to the critical pressure of austenite. This shock strikes the free surface
and a left-facing rarefaction fan is reflected back into the sample (for an (z, ¢)-plot of
these events, see figure 3-3 (a)). When the right-facing forward phase transformation
wave and the left-facing rarefaction fan collide, what happens can be described by
a sequence of two events: that of changing the forward transformation front into a
contact discontinuity, followed by the further change of the contact discontinuity into

a backwards transformation front. These two events will now be discussed.

Changes in Wave Type

The initial forward right-facing phase transformation wave can be conveniently visu-
alized in the (v, p)-plane. In figure 3-7, the initial phase transformation wave which
takes austenite at its critical forward transformation pressure to martensite at a higher
pressure is represented by the chord in the (v, p)-plane from the critical pressure of
austenite to the point A in the martensitic branch (see figure 3-7). In the (v, p)-plane
this cord is the Rayleigh line. As the interaction with the rarefaction fan proceeds
the pressure behind the phase transformation decreases and the initial point on the
martensitic branch (point A) moves downward towards location D. Several intermedi-
ate chords, representing forward phase transformations between the critical austenite
and martensite with pressures below p4 are shown. For example see points B and C
in figure 3-7.

When the pressure behind the forward transformation front reaches that of the
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Figure 3-7: Representation in the (v,p)-plane of the forward transformation front
decaying into a backwards transformation front. The arrows on the chords point to
the state behind the phase transformation. The smaller arrows show the direction of
the progression of pressure behind the phase transformation.

critical pressure in austenite (point D) the wave can no longer support a phase change
and must change type. The forward transformation front now becomes a contact dis-
continuity. As the pressure drops still further the horizontal line, beginning at point D,
translates horizontally downward eventually reaching the backwards transformation
pressure for martensite (point F).

When this point is reached, further decrease in pressure requires another change
in wave type. The contact discontinuity becomes a backwards transformation front.
The corresponding picture in the (v, p)-plane of this backwards transformation front
is of a Rayleigh line from the critical pressure of martensite (point F) to the austenitic
wave curve branch (point G).

Figure 3-8 shows a detailed view in the (z,?)-plane of the interaction discussed
above, for an impact falling in regime B.1. In this figure the locations where the
contact discontinuity and the backwards transformation front form are shown as lo-
cations P; and P, respectively. Also present are the simple waves that are reflected
and transmitted as this interaction takes place. These reflected and transmitted sim-

ple waves will be discussed next.
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Figure 3-8: Detailed view in the (x, t)-plane of the interaction of a right-facing forward
transformation front with a left-facing rarefaction fan. Please see the key presented
on page 48 for a description of the symbols used. We have drawn the boundaries of
the simple waves with a long dashed line.
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Reflected and Transmitted Composite Simple Waves

Here we discuss the nature of the reflected and transmitted simple waves that are
produced in the interaction of a phase transformation wave and a rarefaction fan.

As the right-facing forward phase transformation wave propagates through the
left-facing reflected rarefaction fan, the pressure ahead of the phase transformation
wave must remain at the critical pressure of austenite. To insure this a right-facing
simple compression wave is reflected from the forward transformation front and an
an expansive simple wave passes through phase transformation (see wavelet A and
wavelet A’ in figure 3-8).

At the point where the forward phase transformation front changes into a contact
discontinuity. From standard theory for contact discontinuity and rarefaction fan
interactions [18, p. 180] one sees that both the reflected and transmitted wavelets in
this case are expansive (see wavelet B and wavelet B’ in figure 3-8).

At point F where the contact discontinuity changes into a left-facing backwards
transformation front, the pressure ahead of the wave is held a critical. It can be
shown that this is sufficient to ensure that no transmitted wave is propagated through
the backwards phase transformation. Thus in the (z,t)-plane characteristic impinge
on the back of the backwards phase transformation but no characteristic are drawn
crossing this wave indicating that the state ahead of this wave is constant. We mention
that the reflected wave from the back of the backwards phase transformation is a
compressive simple wave.

From this discussion we see here the first example of a simple wave of mixed type.
The reflected simple wave from the forward transformation front is compressive, the
reflected simple wave from the contact discontinuity is expansive, and the reflected
simple wave from the backwards transformation wave is compressive again. This gives
a structure of compressive, expansive, compressive to the entire reflected simple wave.
In the numerics presented in chapter 5, the boundaries between these simple wave are
easily shown in the (z, t)-plane or by a picture of the pressure profile. In figure 3-9 one

sees clearly the three components of the composite simple wave propagating towards
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the free surface on this plot of pressure as a function of x at a given time. There the
leading compressive simple wave is steepest, the expansive portion is shallower, and
the trailing compressive simple wave is shown last.

From this picture we can observe another phenomena. If any of the compressive
simple waves break before reaching the free surface we must insert a shock propagating
with a speed given by the Rankine-Hugoniot equations. In the (z,%)-plane shown in
figure 3-8 we can see that it is the first compressive portion of this composite simple
wave that breaks. The numerics then inserts a shock (drawn as a dark black line)
propagating to the right.

8

p (GPa)

5.1 5.2 5.3 5.4 5.5
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Figure 3-9: Profile of the composite simple wave of pressure propagating to the right
towards the free surface.

Remark 4 This explanation hints at other effects that do not happen in this physical
system, but could happen mathematically with the hyperbolic system given here. The
natural reverse of the process just described would correspond to a backwards trans-
formation front interact with a sufficiently strong compressive simple wave, producing
a forward transformation as a result. We mention also that if a contact discontinuity
separating two different phases of the same material interacts with a sufficiently strong

erpansive or compressive simple wave transformation among phases could result. As
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a practical note, in the numerics for this problem all waves that could change type are
carefully monitored at each timestep to insure that the correct representation is being

used.

3.2.3 Conclusions

With the full numerical solution to the flow equations, comparisons can now be made
between the free surface plots predicted by the full Bruno-Vaynblat theory and the
experiments of Barker and Hollenbach. Remembering that the BV theory has no free
parameters the a comparison of these plots will show the extend that the BV theory
fully captures the physics of these phase transformation. Plots of this comparison are
shown in figure 3-10.
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Figure 3-10: Free surface profiles for a-e phase transition in iron. On the left are the
experimental curves. On the right calculated curves using the characteristic tracking
method, including rarefaction fans.

We notice that although the curves have improved some, with respect to the
points mentioned in section 3.1, the compressive nature of the first component of
the simple wave that is reflected from the forward transformation front is so great
that it breaks and becomes a shock on its way to the free surface. Thus the free
surface velocity profile resembles the one seen under the rarefaction discontinuity
approximation. From this exercise we have learned a very important fact: in order

to improve the agreement with experiment we must somehow smooth these shocks.
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The manner in which this is accomplished is described in the following section.

3.3 Additional Physical Effects

The results and dynamics of including rarefaction fans into the numerics are presented
in section 3.2. The inclusion of rarefaction fans into the Bruno-Vaynblat model gave
somewhat smoother free surface profiles. We learn that the compressive nature of
the first component of the reflected composite simple wave results in the formation
of a shock and in order to further improve the theory, additional smoothing of this
piece is needed. Three physical effects currently neglected and that would smooth

this compressive simple wave are considered.

1. Dissipation is important. Generically there is always dissipation, and this energy
loss needs to be included in the model. Incorrectly modeling phase transforma-
tions as energy conserving, by not including dissipation, could result in pictures
of qualitatively the same type as presented in figure 3-10. This investigation is

reported on in chapter 4 section 4.1.

2. The equation of state of austenite, while well known for pressures far from
critical, cannot be claimed to be known accurately for pressures near or close
to critical. We exploit this fact by modifying the austenitic equation of state
near the critical transformation pressure for austenite. This modification while
more indirect than other methods can lead to smoother free surface profiles.

This investigation is reported on in chapter 4 section 4.3.

3. As discussed in section 1.3, an alternate approach to the theory of austenitic-
martensitic phase transitions is based on the idea of a relaxation time. These
effects have been incorporated in past models, see for instance [8, 72]. In some
cases it is found that, to achieve good agreement with experiment, a different
relaxation time is required for each experimental curve, which is not a very satis-
factory situation [8]. Since several previous theoretical studies have investigated

this effect, we focused the efforts of this work on the previous two ideas.

62



The next chapter is concerned with the implementations of several of the ideas
discussed here. We begin by considering the effect dissipation has on the full Bruno-

Vaynblat model and then look at modifications to the austenitic equation of state.
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Chapter 4

Model Modifications

In chapter 3 we studied the effects of including rarefaction fans in the Bruno-Vaynblat
model, using a Mie-Griineisen equation of state. The agreement with experiments,
due to this more accurate implementation of the model, improved (relative to the
approximate implementation by Bruno and Vaynblat). However, some disagreements
persisted; significantly the fact that several of the wave signatures at the free surface
(as observed in the experiments) are “smoother” than those produced by the model.
Several physical effects, neglected in the Bruno-Vaynblat model, were proposed in
section 3.3 as possible causes for the discrepancies. With the hope of further im-
proving the agreement between the experiments and the theory, in this chapter we
consider two of these physical effects: first we modify the model so as to include them,
and then we study the consequences of this (the modified models are solved numeri-
cally, and the results are compared with the experiments). In the first modification,
considered in sections 4.1 and 4.2, we introduce dissipation into the model. In the
second modification, studied in section 4.3, we consider the effect of local changes in
the equation of state for the Austenite, affecting the behavior of the material close to

the phase transition regime only.
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4.1 Dissipative Effects

In this section we will study the importance and effects of dissipation in the shock
induced phase transitions under consideration. First we will give arguments indicating
why dissipation may be important, then we will modify the model equations to include
dissipation in as simple a way as possible, next we will introduce a numerical scheme
to solve the modified equations, and finally we will analyze the results from this

modification.

4.1.1 Motivation

In this subsection we give some arguments indicating that the amount of dissipation,
in the regime of the shock induced phase transitions we consider, may be quite large
— so that it should not be neglected. These arguments will be used as a motiva-
tion for including dissipation into the governing equations in (2.2), followed by an
investigation of the effect this has on the predictions of the model.

We begin by pointing out that, after each flyer-plate experiment is finished, the
target material is completely destroyed. Therefore, measurements can only be taken
of the free surface for a very short time (while the target is still in one piece). Fur-
thermore: a full explanation of what happens internally in the target (causing its
destruction) is not known.

For parameter regime B impacts (see subsection 3.2.1), a possible explanation (for
the destruction of the sample) is the following: When the precursor shock propagates
through the target, it raises the sample pressure/stress from atmospheric to critical.
Thus, a region of critical austenite forms between the precursor shock and the phase
transition front (traveling behind the shock, at a slower velocity). One may ask then:
what keeps the austenite in the critical region from changing phase right after the
shock passes, and forces it to wait till the phase transition front arrives? The ex-
planation for this is, roughly, as follows: In iron the martensite phase has a volume
contraction of about 20%, relative to the volume of the austenite phase. Such con-

traction cannot happen at some arbitrary place inside the material, for the volume
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reduction would immediately make the pressure drop below critical (stopping the
phase change). Thus, the austenite must wait till the phase transition front (which,
effectively, carries the volume reduction needed for the transformation) arrives, before
it can change into martensite.

There is, however, a catch to the explanation at the end of the last paragraph.
Namely: it only makes sense for an ideal material, with no defects of any kind. The
reason is that defects allow the contraction needed to happen, at the price of a fracture
in the target material. Further, any such fracture will (generally) allow more fractures
to happen, the net consequence of this being that very many fractures will develop
in the target (in the region between the precursor shock and the transition front),
with some amount of phase transition occurring before the arrival of the main phase
transformation front. These fractures are then the cause of the sample destruction.

Modeling at the “continuum” level of the process described in the prior paragraph
is very hard, and beyond our current level of understanding — in fact, trying to avoid
such modeling was one of the main motivations Bruno and Vaynblat had when they
developed their model. We will not attempt to do this here, but we observe that
one important consequence of this process is that we can expect a large amount of
dissipation to occur because of it: From the view point of the transformation wave,
the cracked material it travels through is extremely dissipative. Thus we propose to
include dissipation into the model, and do so in as simple a way as possible. Namely:
we will take an approach similar to the one that is used in the modeling of dissipation
by turbulent fluid flows, and add an “effective” viscosity to the governing equations
— note that this viscosity is not molecular viscosity, which is usually quite small, in
fact, we expect it to be large. This “viscosity” will, unfortunately, be a free parameter
(which we do not know how to measure independently). Actually, in agreement with
the motivation for this dissipative model, we will introduce two viscosities, namely:
one value will apply ahead of the precursor shock, and a second (much larger one)
behind it.

We note that this work here is the first to incorporate the idea of an effective

viscosity within the context of phase transformations. It is the very fact that the
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Bruno—Vaynblat model excludes mixture regions that allows us to treat both the
effects of viscosity and phase transformation within the context of the same model.
Previous authors have used the idea of an effective viscosity to study the dislocation
density in a material [40], and (from this point of view) our viscosity approach can
be stated as postulating an increase in the dislocation density as the result of the
precursor shock raising the pressure to critical.

Finally, we point out that, in addition to the dissipation we expect due to the
process described above, there are other sources that may also be important, such as
(for example) the losses introduced during the movement of crystalline grain bound-
aries. We also notice that the main effect of introducing dissipation into a hyperbolic
system is the “smearing” of the shocks, and the widening of the rarefaction fans (see
reference [75]). This, clearly, will tend to make the theoretical free surface plots more
like the experimental ones. An important point to be made here, however, is that dis-
sipation should not affect the thickness of the main transformation front itself. Thus,
in our modified model the shocks will no longer be modeled as discontinuities, but

the transformation fronts will still be discontinuous — see figure 4-1.

4.1.2 Dissipative Governing Equations

We modify the Eulerian equations (2.1), to include dissipation, as follows:

82
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where the viscosity coefficient y is a measure of the amount of dissipation present in

the system. Equivalently, the Lagrangian equations (2.2) become

9 0 o 0 9 (10u
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To study the effect that the added viscous term has on the free surface plots, we
solved numerically the Lagrangian equations in (4.2). In what follows we will first

present a brief discussion of the numerical algorithm used in solving these equations,
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followed by a presentation of some selected results from the numerical calculations,
and finally comment on the results obtained.

We note that these equations are more complicated than they appear upon a
cursory examination. The problem appears because of the phase transitions, across
which the equation of state (relating the pressure p to the density p) has a disconti-
nuity. This introduces discontinuities in the flow variables, which makes the meaning
of the twice-differentiated dissipative term not clear at the location of the phase tran-
sitions. We will deal with this difficulty in what follows, within the context of the

numerical algorithm.

4.2 Dissipative Numerics

In this section we describe the motivation and discretizations used in the numerical
algorithm chosen for this problem. In section 3.3 of chapter 3, we discussed sev-
eral qualitative differences between the free surface velocity plots generated using the
Bruno—Vaynblat model and the experimental measurements of Barker and Hollen-
bach. Of the differences noted, the most important disagreement was in the slope (or
width) of the second wave. All the theoretical free surface predictions (thus far) have
slopes that are almost vertical, while the experimental curves are much smoother.
The greatest disagreement in regards to this effect, occurs with the first experiment
presented in Barker and Hollenbach [5]. This experiment corresponds to a parameter
regime B impact (see subsection 3.2.1). Thus, the numerical scheme is implemented
with the aim of solving the equations in (4.2) for regime B impacts.

For regime B impacts, the first Riemann problem (between the flyer and the tar-
get) produces two right-facing waves: a precursor shock and a phase transformation,
see figure 3-3. A hypothetical representation of the solution at a time after impact,
but before the precursor shock has collided with the free surface, is shown in figure 4-
1. There one can see the precursor shock broadened by the dissipation: the shock
is now a compression wave where the competing effects of nonlinearity and diffusion

balance each other. It is clear from this figure that the phase transformation front
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Figure 4-1: Hypothetical diffusive pressure wave profile, for an impact in the parameter
regime B, plotted at a time shortly after the impact. The horizontal axis is distance, in
millimeters, measured from the point of impact. The vertical axis is pressure, in Giga
Pascals. Domain A (respectively B) is defined as all the points to the left (respectively, to
the right) of the phase transformation. Here we see the right-facing phase transformation,
present as a discontinuity, and the right-facing shock, slightly smeared by the viscosity,
both propagating towards the free surface — located at z ~ 6 mm.

divides the material into two domains of interest: domain A (containing martensite,
behind the transformation front) and domain B (containing austenite, ahead of the
transformation front).

The natural division of the flow into separate domains, by a moving phase trans-
formation discontinuity, is what motivates the transformation given below — in which
we consider a general case, with more than one discontinuity and more than two do-
mains. Specifically, we derive discrete numerical equations for M domains, separated
by M + 1 interfaces — including the left end of the first domain, and the right end of
the last domain (that is: the left and the right ends of the sample, respectively). In
each domain there is a single phase, either austenite or martensite, so that a single
equation of state applies. Thus, in each domain the equations in (4.2) have a clear
meaning, and standard finite difference discretizations can be used. The problem is
then reduced to the question of how to solve the equations across the phase transition
fronts, where the equation of state has a discontinuous jump, and the meaning of the

equations in (4.2) has to be clarified.
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Figure 4-2: Several domains separated by moving discontinuities, including the left end
of the first domain and the right end of the last domain — that is: the left and the right
sample ends, respectively. Each discontinuity is a phase transition, and in each domain
there is a constant phase, either austenite or martensite.

Consider a section of the real line from &, to g, containing M + 1 interfaces and
M domains, as in figure 4-2. Assume that, as a function of time ¢, the locations of the
interfaces are given by the smooth functions & = s;(t), where 0 < i < M, &, = so(t)
corresponds to the left end of the sample, and £z = s,(¢) corresponds to the right
end. Notice that we work in Lagrangian coordinates, where the function & = s;(¢)
indicates the mass to the left of the given interface (up to some constant, generally
selected so that &, = 0), and M; = $;(¢) is the mass flux across the interface. A
similar formulation is possible in Eulerian coordinates, where the values s;(¢) and
5i(t) give the location in space and velocity of the i-th interface.

In any given domain (s,,_1(t) < & < s,,(t)), define the coordinate transformation

§ —&m by

€ = Sma(l) so that §=fm1 = n=0. (4.3)

Sm(t) = sm-1(t)’ E=5, <= &n=1.

é-m =

Thus the m-th domain is transformed into the fixed interval [0,1] — this is a math-
ematical trick often used in free surface calculations [35]. Of course, the functions
si(t) are not known beforehand, so that the price we pay for simplifying the domain
of integration (eliminating the free surfaces) is to introduce a new unknown for each
domain — namely: the functions s,,(t), 1 <m < M.

In each domain, we can now write the equations in (4.2) in terms of the local
variable &, using equation (4.3) above. Conservation of mass, the first equation

n (4.2), becomes

: NG, 0
av— m ((1—5) Sm—1+§Sm) a—§V+a—€u :0, (44)
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and conservation of momentum, the second equation in (4.2), becomes

0, (=Qén1+Emd 1 3 p 5<18_“>,(4.5)

a B Sm — Sm—1 a_gu Sm — Sm—1 a_é-p B (Sm - 8m71)2 a_é- ; 8{-“

where, to simplify the notation, we have dropped the subscript m on &,,. Next we
discretize these equations, using a finite differences staggered grid approach.
Break up each domain 0 < ¢ < 1 into a uniform grid, with N nodes, including

the end points. Namely, let

&= (i—1)AE, where Afzﬁ and 1<:<N, (4.6)

be the nodes, and call the interval & < & < ;.1 the i-th cell — with center: §i+% =
5 (& + &41). Then, for the specific volume v (and density p = 1/v) we use a node
centered approach, with the numerical scheme carrying the values of the density at
the nodes — i.e., the values: v(&,t). For the velocity, on the other hand, we use a
cell centered approach, with the numerical scheme carrying the values of the velocity
at the cell centers — i.e., the values: u(&;, %,t). It is now convenient to introduce
notation to denote whether a numerical variable is defined on nodes or cells. To be
specific, when referring to a cell centered variable, for example u, we will use a bar, as
in u. On the other hand, a node centered variable will receive no special indication.
Thus the notation v, applies to the node centered value of the ¢ derivative of the
specific volume, while ¥, means the cell centered value of the same thing. With these
definitions we are now in a position to write down the spatial discretization of the
dissipative equations in (4.4) and (4.5) are, using the staggered grid technique, as
done in the subsections that follow.

We point out that the full discretization of the equations in (4.4) and (4.5) will
be done using the method of lines. In this method one first discretizes the spatial
derivatives, forming a semi-discrete system of equations, and then uses an ordinary
differential equation solver to discretize the time derivatives. Following this approach,
in the presentation below we first focus on obtaining semi-discrete approximations to

the governing partial differential equations, and afterwards deal with the discretiza-
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tion of the time derivatives, so as to obtain a fully discrete set of equations.

4.2.1 Method of Lines Applied to the Dissipative Problem

Since the method of lines applied to the equation in (4.4), representing conservation
of mass, involves updating a node centered variable, v, we need discrete versions for
the spatial derivatives in the equation, centered at the nodes. Thus we use centered

differences to approximate the spatial derivatives appearing in equation (4.4), namely:

9,
%€

ﬁ(éi-}—%: t) - ﬁ(&if% ) t)
A& ’
(4.7)

_ V(&1 t) = v(&i1,t)

and %u(&, t) &

where we note that both expressions on the right hand side involve the natural domain
of definition of the variables involved (node centered densities and cell centered veloc-
ities). These approximations, when used in (4.4), lead to the following semi-discrete

system (correct up to second order in A) for the conservation of mass

9 (1 =&)Smo1 +&8m | V(Eia1,t) — v(Gi1, t)
&V(&’ t = ( S — Sm_1 ) 2AE

1 a(gi-i—%’ t) - a(fi—% ’ t)
i ( ) AE |

(4.8)

Sm — Sm—1

A similar process can be applied to the equation in (4.5), for the conservation of
momentum. This requires updating (in time) the velocity, a cell centered variable, so
that cell centered approximations for the various derivatives with respect to £ involved
are needed. The exact discretizations selected to do this are no more technically
complicated than the ones used above in the conservation of mass equation, but
contain more terms. Thus, to avoid displaying long formulas here, the semi-discrete
equations for the conservation of momentum are shown in appendix C.

The discretizations above are, of course, valid only inside each domain — where
the relationship between p and v, as given by the equation of state, is smooth. We
need now to worry about what happens at the ends of each domain, where two type of

situations may arise: either the end of the domain coincides with the end of the sample
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(i.e.x s; for i = 0 or ¢ = M), or the end of the domain corresponds to the location
of a phase transition (i.e.: s; for 0 < ¢ < M). This leads to two types of boundary
conditions, that must be imposed at the domain ends, which we call (respectively)
outer boundary conditions and inner boundary conditions. We note that, in order to
consider the resolution of this problem, we can restrict the discussion to the simpler
case M = 2, when there are only two domains — such as in the example shown in
figure 4-1 for a typical initial condition in the parameter regime B, where a single
right-moving, discontinuous, phase transformation front separates the martensite on
the left from the austenite on the right. In this case, as indicated in the figure
caption, we will call the martensite domain the domain A, and the austenite domain
the domain B — note that the precursor shock wave in the austenite is not a true
discontinuity in the dissipative approximation, and it is not a domain boundary.

In the numerical calculations we are not interested in computing for times large
enough that wave reflections from the back end of the impactor reach the free surface.
In the particular case of two domains, such as the one in figure 4-1, this means that
we can assume that the left boundary of domain A is at negative infinity — with
the right boundary at the phase transformation, located at s(¢). On the other hand,
domain B is bounded on its left by the phase transformation front, and on its right
by the free surface, at £g. Finally, we note that, as the flow evolves, the phase
transformation wave will change type: from a right moving phase transformation
front, to a contact discontinuity, to a left moving phase transformation front — see
subsection 3.2.2. Thus the domain boundaries are not always phase transformation
fronts, and can even switch from being one to being a contact discontinuities, or
vice versa. Generally, the domain boundaries are just discontinuities (or interfaces),
separating the martensite phase on one side from the austenite phase on the other.

Going back to the issue of the boundary conditions, we note that the discretiza-
tions for the conservation of mass and momentum equations in (4.8) and (C.3)), both
require information about the specific volume and the velocity one node and one cell
away from the cell or node on which the time derivative terms in the semi-discrete

equation are centered. Thus these equations cannot be used sufficiently close to a

73



boundary. In the next subsection we discuss the additional equations used to solve
for the nodes and cells near boundaries (the inner and outer boundary conditions

mentioned earlier in this subsection).

4.2.2 Boundary Conditions

In this subsection we discuss the equations used to update the unknowns, for nodes
and cells, near the numerical domain boundaries. Two different types of boundary
conditions are discussed here. The first type, which we call the outer boundary con-
ditions, apply at the ends of the computational domain, namely: at &£, and £z. The
second type, which we call the inner boundary conditions, are the conditions needed
at the interfaces between the domains. The exact conditions used at any given in-
terface depend on the type of discontinuity separating the domains, be it a forward
transformation front, a contact discontinuity, or a backwards transformation front.
Below we discuss these two types of boundary conditions, as used in the numerical

simulations.

Outer Boundary Conditions

The stencils of the semi-discrete equations, in (4.8) and (C.3), require the specification
of variables one node and one cell to either side of the node or the cell at the stencil
center. As a consequence of this fact, two boundary conditions are required on each
outer boundary. This is consistent with the increase in order of the model partial
differential equations, due to the added dissipative term.

To model numerically the semi-infinite nature of domain A, we argue that: for
a sufficiently large and negative value of &, the specific volume should be constant.
Thus we set v = vp, at & = &, where vy, is obtained from the solution of the first
Riemann problem (the collision of the impactor and the flyer), a calculation that is
done before the full viscous flow computation is started. This gives one of the two
boundary conditions needed on the left end of the numerical domain.

Similarly, we argue that on the right end of domain B the specific volume should
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also be a constant, i.e.. v = vg on &g, where the constant is determined by the
equation p(vg) = 0. This follows because the right boundary of domain B is a free
surface, and cannot support any pressure.

Finally, to determine the second boundary condition required at each end, we use
the conservation of mass equation in (4.2). From this equation it is clear that, if v is

constant along a particle path & = constant, it follows that

This gives a second boundary condition, applicable on any £ = constant boundary,

where v is kept constant.

Inner Boundary Conditions

Here we will formulate the boundary conditions used at the interface between the two
domains, A and B, across which there is a jump in the equation of state (martensite on
one side and austenite on the other). First we will consider all the unknowns/variables
(at or near the interface) that cannot be updated by either of the equations in (4.8)
or (C.3), and then we will systematically provide the extra equations needed to update
their values.

We begin by considering the immediate neighborhood of the interface, and the
associated unknowns there. Figure 4-3 shows a schematic representation of the situ-
ation. In this figure the interface is denoted with a cross, the nodes with solid dots
and the cell centers with open dots. There are, however, some important clarifications
that must must be made with regard with this figure: in fact, the rightmost node of
the left domain (node N in the figure), the leftmost node of the right domain (node 1
in the figure), and the interface are the same point in space, but we have represented
them separately in the picture — because they play different roles in the numerical
algorithm. Similarly, there is no cell NV belonging to the left domain, nor is there a cell
0 belonging to the right domain, but (for numerical reasons, which will become clear

in the development that follows below) these ghost cells have been introduced in the
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figure. We note that, in space, the N-th (ghost) cell of the left domain is actually to
the right of the interface — it represents a ghost extension of the state of the material
phase on the left of the interface, to the right of the interface. Similarly, in space, the
0-th (ghost) cell of the right domain is actually to the left of the interface.

*—O—0—O0O—x—0O—e—0—0
N-1 N-1 N N 0 1 1 2
mass mmt | | mmt mass

boundary nodes

Figure 4-3: Schematic representation of the numerical grid near an interface. The inter-
face is indicated by a cross, the nodes by solid dots and the cell centers by open dots.
We note that, in fact, the rightmost node (i.e.: N) of the left domain, the leftmost node
(i.e.: 1) of the right domain, and the interface are the same point in space, but (because
they play different roles in the numerical algorithm) they are represented separately in the
picture. Similarly, there is no cell N belonging to the left domain, nor is there a cell 0
belonging to the right domain, but (for reasons, explained in the text) these ghost cells
are introduced by the numerical algorithm — they represent extensions of the material
phases on each side of the interface, to the other side. In space, the N-th (ghost) cell of
the left domain is actually to the right of the interface, and the 0-th (ghost) cell of the
right domain is actually to the left of the interface.

The representation of the numerical grid shown in figure 4-3 provides a convenient
way to label the unknowns around the interface. In this representation, each node
and cell center carries one unknown (the values of the specific volume and velocity,
respectively) and the interface carries two unknowns, namely: its Lagrangian coor-
dinate position & = s(t), and the mass flow across the interface M = § — both as
introduced by the transformation in (4.3), mapping the equations to a fixed [0, 1] grid.

To update (in time) the specific volume in the node labeled N — 1, the formula
in equation (4.8) can be used, since an additional cell and node exist to either side
of this node. The same statement can be made about the cell center labeled N — 1,
using the formula in equation (C.3). Similarly, the cell center labeled 1, and the
node labeled 2, can be updated using the semi-discrete formulas in (4.8) and (C.3).
This still leaves six variables for which the regular stencil used in the semi-discrete

equations cannot be used, and for which extra equations are needed. These are:

VN, Un, S, S, g, and v;.
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The first extra equation is obtained by approximating the mass flux through the

interface (i.e.: M = $) by the finite difference formula
(4.10)

where s™ is the value of s = s(t) at time ¢t = ¢,,, and At = t,,; — t,, (higher order
approximations for the time derivative are also possible, of course, but this is the one
that we used). The other five extra equations will depend on the type of interface
between the two domains. They are presented in detail below in their continuous
forms, and in their discretized forms in appendix D. In summary: two equations follow
from the Rankine-Hugoniot jump conditions (conservation of mass and momentum
across the interface), one equation from knowledge of the specific interface type, and
the remaining two equations are obtained from a numerical extrapolation process to

be described below. There are now two cases to consider, depending on the interface

type.

Case 1: the interface is a forward or backwards transformation front.
Two of the equations follow from the conservation of mass and momentum across the
interface, where care must be taken to include the fluxes due to the dissipative terms.

Modifying the equations in (A.11) to include the fluxes due to dissipation, we get

$[v]+[ul=0 and  §[u]— [p(v) — %(%u} =0, (4.11)

where the partial derivative ug must be computed without crossing the discontinuity
— it is because of the need to compute this derivative that the ghost cells were
introduced earlier. We note that, in order to derive these equations, we have assumed
that there is no wviscous contribution to the momentum fluz arising from the phase
transformation. Mathematically this means that singularities of order higher than
Dirac deltas are ignored. These singularities arise from the dissipative term in (4.2),
because the variables are discontinuous across the interface. After this is done, the

second jump condition above in (4.11) guarantees the cancellation of the remaining
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distribution (Dirac’s deltas) part in the momentum equation in (4.2).

A further condition, that is specific to transformation fronts (forward and back-
wards), follows from the fact that the pressure ahead of the wave must be at the
critical value for the phase that the wave is propagating into. This gives a third
equation

AM AM
PN = p({:rit J or p1= pim ! ) (4.12)

where which formula is used depends on the direction of propagation of the interface,
and the type of phase transformation.

Finally, the two remaining boundary conditions are obtained from a numerical
approximation. As explained above, the ghost cells are introduced because of the
need to compute the derivatives u¢ in the right equation in (4.11). However, this
is meaningless unless values for the velocities are provided at the ghost cell centers.
A reasonable approach to doing this is to use extrapolation of the values of the
velocity, from the side the ghost cell belongs to. We found, through experimentation
with various possibilities, that first order extrapolation gives reasonable results for
this purpose. This yields, on the uniform grids we used (see (4.6)), the following

equations for uy and

Uy = 2’L_1,1 + Ug and Uy = 2’17,]\7_1 + Un_o. (413)

Case 2: the interface is a contact discontinuity.

In this case
ds
= 0, (4.14)
because no mass crosses the interface. This gives a condition specific to contact
discontinuities only. Conservation of mass and momentum now take the simpler
forms
w o

W =0  and [p(v) - ;8—§u] =0, (4.15)

where the same remarks made after the equations in (4.11) apply. Finally, two addi-

tional (numerical) boundary conditions are obtained by manipulation of the conser-
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vation of mass differential equation in (4.4). This equation yields, when evaluated on
the N-th node:
d 1 0

- VN — _UNZOa

dt s— & O¢
where we have used the fact that we have only two domains, that the node is actually
a particle path, and that s = 0. A semi-discrete equation for vy can now be obtained
by discretizing the spatial derivative of the velocity in this equation, using finite

differences. This gives

d 1 3y — 4lin_1 + UNn_2
_V —
dt Y s—& 2AE

=0, (4.16)

where the velocity value at the center of the ghost cell (i.e.: @y) follows by the same
extrapolation process used in earlier in equation (4.13). A similar procedure generates
a semi-discrete equation for vy.

In appendix D we present a detailed summary of all the semi-discrete equations
used to update each node, cell, and interface (i.e.: s) at the boundary between do-
mains. The numerical scheme is completely defined once we specify how to discretize

the time derivatives. This is explained in the next subsection.

4.2.3 Discretization of the Time Derivatives

In this subsection, following the method of lines approach, we finish the construction
of the viscous numerical algorithm. We do so by presenting the strategy used to
discretize the time derivatives in the in the semi—discrete equations derived in the
earlier subsections. To this end we use the #-method, which leads to some of the
most commonly used (simple) algorithms for time integration.

The semi—discrete equations for the dissipative model can be written in the com-
pact vector ode form

d

ZY = f(Y), (4.17)

where Y = Y/(t) is a vector representing the solution to the problem, and f is the

nonlinear vector function that follows upon writing the semi-discrete equations in

79



terms of Y. Specifically, we can write Y as a vector having one block of entries
per domain, with the blocks separated by the variable giving the position of the
corresponding interface s,. Furthermore, within each block let the Y entries alternate
between the node centered specific volume values vj and the cell centered flow velocity
values u; 1. Note that the values of u in the ghost cells are not included in Y, since
they are not evolved in time, and are computed directly by the purely algebraic
equations in (4.13).

Let now 0 < # < 1 be a relaxation parameter, whose value can be used to
control the accuracy and stability of the algorithm (see below). Introduce also a time
discretization, with ¢,.1; = ¢, + At and Y™ = Y (¢,). Then the #-method algorithm
for the ode in (4.17) is given by

F(AY™ Y™ = AY" — At f (Y" + 0 AY™) =0, (4.18)

where AY™ = Y"1 Y™ and F is defined by the formula. It is well known that: when
6 > 1/2 this algorithm is unconditionally stable, and when 6 < 1/2 the algorithm is
conditionally stable only [59]. Particular values of € give rise to some common time

integration strategies:
e 0 =0 gives the explicit forward Euler scheme.

o ) = % gives the second-order, centered implicit trapezoidal rule (or Crank-

Nicholson).

e 0 =1 leads to the backwards implicit Euler method.

In our calculations we used a value of 4 slightly above 1/2 (in fact § = 0.55), to assure
maximum stability and accuracy.

Given the current state Y, equation (4.18) is a (generally nonlinear) system of
equations for the increment vector AY ™, which we solve using Newton’s method. This
requires the calculation of the Jacobian of the nonlinear vector function F', which is a
cumbersome but straightforward task — since, in fact, F' is made up by fairly simple

formulas.
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We finally point out that, since the equations used at the interface change as the
interface changes type, we monitor where this changes take place, and then adjust

the formulas for the function F' and its Jacobian accordingly.

4.2.4 Dissipative Numerical Results

From the analysis in subsection 4.1.1, it is clear that we should have (at least) three
different effective viscosities: one (relatively low) in the austenite ahead of the pre-
cursor shock, another (high) one in the critical austenite behind the precursor shock,
and a third one in the martensite (behind the phase transformation).

However, the main purpose in introducing dissipation is to explain the broadening
of the second rise, after the first sharp one produced by the arrival of the precursor
shock, in the free surface experimental velocity plots. It is clear that, for this, the
dominant effects will occur in the critical austenite region, as the waves reflected
back from the free surface (produced when the precursor shock arrives) propagate
into this region and interact with the oncoming phase transformation front. Thus,
a much simplified viscosity—approach is possible: we simply use two values for the
viscosity, one (valid everywhere in space) for times before the precursor shock reaches
the free surface, and another one for the times after this event. To be specific: in the
equations in (4.2) we take the effective viscosity p as a piecewise constant function of
time. In this two viscosity model 4 = p; throughout the sample until the precursor
shock strikes the free surface. After this collision the value of u is changed to u = s
everywhere in the sample. This simple approach should be able to capture the main
changes that the introduction of dissipation causes on the free surface motion.

The numerical experiments we conducted with the dissipative algorithm can thus
be described as follows: the code was run with various values of the two viscosities,
and (by trial and error) these values were adjusted to have the best fit with the
experiments. It is important to point out that the same two viscosity values were

used to simultaneously find the best fit to all the experimental curves,

so that the good fits we obtained (see figure 4-4) are not merely a consequence of

adjusting enough free parameters.
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Figure 4-4: Comparison between the Barker and Hollenbach experiments and the numer-
ical solutions to the two-viscosity model, where the values of the two viscosities (the same
for all the curves) are selected to optimize the fit. The actual viscosity values used are
given in subsection 4.2.5.

The arguments in subsection 4.1.1 suggest that the “first” viscosity (the one valid
in the sample ahead of the precursor shock) should be low. This is consistent with
the experimental results, since this viscosity determines how spread-out the precursor
shock is, and the first wave in the experimental plots is very sharp. It is only the
second wave that is broad, which agrees with the idea that it is the material behind
the precursor shock that is highly dissipative — due to the cracking induced on the
crystalline structure by local phase transformations, as explained in subsection 4.1.1.

The results of our investigation are summarized in figure 4-4, which shows a
remarkably good agreement — given the simplicity of the theory. In fitting the
values of the two viscosities, the actual process we used is as follows: we first found
the value of the (small) first viscosity, to have the best fit between calculations and
experiments for the first wave. Then the value of the (large) second viscosity was
found, so as to have the best fit with the second wave. We point out that the results
shown are rather insensitive to the value of the first viscosity, in so much that we
obtain good agreement with the experiments as long as it is sufficiently small. The
sensitivity to the second viscosity is not large either, in so far as small factors (two or
three) up and down do not make much of a difference. But the order of magnitude is

pinned down with certainty.
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4.2.5 Validity of Viscosity Value

The values of the two effective viscosities leading to the best fit curves shown in

figure 4-4, calculated using the process described in subsection 4.2.4, are

p1 = 9.11 x 10 Pasec = 9.11 x 10* P,

(4.19)
e = 1.27x103Pasec = 1.27x10*P,

where the unit used is the CGS unit for dynamic viscosity, the Poise. Note that

kgr

T
& _ o1
CIm sec m secC

1P=1 = 0.1 Pa sec

and that (as a point of comparison), for water under standard conditions: p ~ 1072 P.
It is also important to note that, while the values above in (4.19) are the exact ones
used to obtain the curves in figure 4-4, these curves are not very sensitive to the
particular values used — as pointed out at the end of subsection 4.2.4. Thus, the
three digits displayed here should not be taken seriously, with the value of ;; merely
indicating an upper bound on how large the first viscosity can be taken,! and the
value of s giving a rough idea (within a factor of two or so) of the appropriate size
for the second viscosity.

Obviously, we can interpret the process leading to (4.19) as that of providing a
rough measurement of the effective viscosity — or dissipation coefficient — under the
conditions of a large dynamic load produced by the precursor shock in the experiments
by Barker and Hollenbach. The natural question is now: are these numbers reason-
able? Is there agreement with other measurements, under similar conditions, to be
found in the scientific literature? Clearly, there is no problem with the value of y; we
obtained. This value should be interpreted as merely an upper bound on what the
two—viscosity model requires for agreement with experiments, and the value is quite
consistent with the values viscosity has for most fluids under normal conditions (i.e.:

these values do not exceed p; above). The real question has to do with the value of

1 Clearly, with more precise data on the first wave, better values for u; would be easy to obtain.
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2, which is actually quite large (six orders of magnitude larger than the viscosity of
water, for example). We consider this issue next.

Unfortunately, due to the extreme pressures experienced by the sample, direct
measurements of the viscosity under these conditions would be very hard, and we
were unable to find any within the published literature. The only form of iron under
pressures comparable to the ones studies here discussed in the literature, is molten
iron in a liquid state. Admittedly, molten iron and solid « or € iron are drastically
different phases of the same material. Thus, in any comparison of this sort, the best
we can hope to achieve is order of magnitude agreement — which would, at least, give
us some extra degree of confidence in the numbers we obtained; or prove us wrong if
no agreement occurs.

In molten iron at the high pressures involved, experimental measurements (again)
would be very hard, and we found none published. But theoretical calculations have
been performed by a number of authors, mostly motivated by geophysical applica-
tions. Namely: most of the Earth’s core is believed to be composed of molten iron,
at a pressure about 10 times as large as the critical pressure for the a—¢ phase trans-
formation we have been studying [37]. A determination of the viscosity of the molten
core is needed, for example, to explain the damping of radial seismic wave modes
propagating in the earth [1]. It is thus interesting to compare the value of the (sec-
ond) wiscosity ps we obtained, with the theoretical predictions from the geophysical
literature.

A thorough literature review of published dynamical viscosity calculations for the
Earth’s core is presented in [64]. The values reported there for the viscosities in the
outer core span 14 orders of magnitude, from 102 P on the lower end, to 102 P
on the upper end. This huge variation is due, in part, to the varying number of
ways used to arrive at the values of the parameter, most of which are very indirect
(and probably not too reliable). The approaches include (for example) extrapolation
from values measured at lower pressures, measurements based on the changes in the
Earth’s magnetic field over geological time scales, molecular dynamical simulations,

and others. The important fact for us, however, is that the value of ps reported in
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(4.19) is in the middle of this range.

A second source of measurements, that we can use as a comparison check with our
value for the second viscosity, is provided by the measurements of effective viscosities
based on shock propagation experiments (without phase transitions) in solids [3,
58, 63, 67]. For example, Band [3] used the approach of comparing the analytic
viscous profile for a shock wave with the experimental profile, to obtain a value for
the viscosity. Typical values for the viscosities obtained by these approaches are
exemplified by the values (for aluminum) given by Prieto et al. [58] at 1.4 x 103 P,
and by Sakharov et al. [63] at 2 x 10* P. Both of these values are not too far away
from the one for us in (4.19) — with a close match not expected, since these shock
experiments were done either for materials not exhibiting phase transformations, or

with (relatively small) pressure jumps that do not result in a phase transformation.

4.3 Equation of State Modifications

In this section we consider an alternate physical means by which the Bruno-Vaynblat
model could be modified to give more realistic free surface velocity plots, for impacts
in regime B. As stated above, a modification to the austenite equation of state could
be made in hopes of effecting the free surface. When one looks at figure 3-3 (a) on
page 51, one sees that the width of the reflected fan, WL, is quite narrow. In all
of the regime B cases this left-facing rarefaction wave is traveling into a region of
austenite at its critical pressure. Along its path this rarefaction fan collides with the
phase transformation wave, WlR’b. One of the results of the ensuing interaction is a
reflected composite simple wave called W, see subsection 3.2.2. Tt is this composite
wave, that collides with the free surface and affects the free surface velocity plots. In
fact when this wave reaches the free surface a second jump in velocity is recorded.
Experiments suggest that the second wave should be “smooth”, and one speculates
that this might happen if the rarefaction wave W) were not so narrow.

As mentioned in section 3.2, the speed of the head of the leading edge of the

WL wave is given by the derivative of the equation of state at the critical pressure

85



of austenite (also see equation (4.20) of this section). This speed, and therefore the
equation of state, plays a very influential role in determining the thickness of the
reflected fan, W, and correspondingly the size of the interaction region that forms
when this rarefaction fan collides with the forward phase transformation. Intuitively
the larger the width of this reflected fan the larger the interaction region and therefore
the larger the reflected composite simple wave, W that is sent towards the free sur-
face, see subsection 3.2.1 regime B. In contrast to what happens with a Mie-Griineisen
equation of state, if the reflected composite simple wave, W, is significantly wide it
might not break before it reaches the free surface and the resulting free surface profile
for the second wave would not be so steep, see subsection 3.2.2. If we can prevent
shock formation in the W¥ simple wave we might have a chance at improving the

agreement between theory and experiment.
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Figure 4-5: Space time plot of the reflected fan, computed with Mie-Griineisen equation
of state, interacting with the phase transformation wave in a typical regime B situation.

To investigate the effect the austenite equation of state has on the free surface
(through the means mentioned above) we modified the equation of state slightly in
a neighborhood of the critical pressure pZ... The attempt was to increase the speed
of sound at this point and correspondingly the speed of the head of the reflected

rarefaction fan. The speed of sound in an Eulerian coordinate system is given by

d
2= —v2£ . (4.20)
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From this expression we see that in order to increase the value of the sound speed we
need to decrease the value of p/(v) at the critical volume. We note in passing that the
definition of the sound speed at critical is somewhat ambiguous. Mathematically, it is
proportional to p'(v) as in equation (4.20). For the p(v) relationship used to investi-
gate phase transformations, however, the analytical description of the v-p relationship
changes at this critical value, see equation (2.4). Thus this derivative at critical can
only be defined using one-sided limits. Physically the speed of sound should corre-
spond to the speed at which small disturbances, expansive or compressive propagate.
When the pressure is critical, however, the material cannot be compressed any further
without a phase transformation. To expect this one-sided limit of the slope of the
Mie-Griineisen equation of state to be an accurate representation of the sound speed
would be naive. In fact, the equation of state near the region in which the actual
phase transformation takes place is very poorly understood overall. Small modifica-
tions to the equation of state in the region near the forward transformation pressure
of austenite would certainly be beyond experimental error.

The Mie-Griineisen equation of state, used in all the sections of this thesis as
an equation of state for both austenite and martensite (until now), consisted of the
following functional form for the pressure as a function of volume, see appendix B

_ 2 n(v)
p(v) = PO ()2 (4.21)
Here pg, ag, and s are material dependent constants and 7 is the fractional volume

change from some reference state vy or

Vo —V v
= =1-—. 4.22
n() = 2o - (422)

The value of ¥y is normally taken to be the specific volume of austenite at zero
pressure, or Vo = 1/py = vo. We see that n > 0 corresponds to compression of this
volume and 7 < 0 corresponds to expansion. The variable n will be used to simplify
the presentation whenever possible.

Rather than modify the existing austenite Mie-Griineisen equation of state given
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above, we will construct a new one that is not very different from the original. The new

equation of state will enable better control over the slope at critical. In constructing

this new equation of state for austenite the following, well established criterion, must

be satisfied.
1. p(vg) = 0. The pressure at the rest state for austenite must be zero.

= ¢. Here ¢ is the well documented sound speed in austenite at the

_ 2 dp
2. —vy av
vo

reference volume vy.
3. P(Verit) = Perit- The pressure at the known critical volume is the known critical

pressure.
4. p'(v) < 0. The pressure increases with decreasing specific volume.

5. p"(v) > 0. The pressure is a convex function.
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Figure 4-6: On the left, comparison of the Mie-Grineisen equation of state with the
exponential one proposed in equation (4.24). On the right, space-time wave diagrams
for an impact in regime B for the a—e phase transition in iron, done using the modified

equation of state in equation (4.24).

These last two criteria are required from purely thermodynamic constraints on the

equation of state, see for example [18, p. 5]. While satisfying all of these requirements

we would like to be able to make the sound speed at critical as large as possible. The
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sound speed at critical can be written as

dp
i = —VQE LTV (1-n)
crit

2 dp

, 4.23
d77 Tlerit ( )

and an equivalent statement to maximizing c.; is to maximize Z—z\%m. To achieve
control over the slope of p/(n) at critical, we took a p = p(n) equation of state of the

following form

(m—n¢rit)

p(n) =a+be"+ce < . (4.24)
Requiring conditions 1, 2, and 3 from the above list gives three equations for the

three unknowns a, b, and c. These equations can be easily solved. With these three

coefficients now determined in terms of known quantities we see that p'(neit) is given

by

C  (m—7crit)
, ALEEERL® ¥ 1 T
p(ncrit) :b6n+—6 €

C
= beerit + — (4.25)
€ Nerit €

and smaller values of € give larger values of p'(7).i) and correspondingly greater values
for the sound speed. The value of € is modified to increase the width of the reflected

rarefaction fan. The value of ¢ we used in the equation of state is 1.5 x 1073.
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Figure 4-7: Comparison between Barker and Hollenbach experiments experimental free
surface profiles and theoretical free surface profiles predicted from equation (4.24).
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For comparison, we plot the p(n) formula of the austenite Mie-Griineisen equation
of state and equation (4.24) in figure 4-6 (left). Notice that the two curves generally
agree over a fairly long range of n’s but begin to diverge as we approach the critical
pressure. We see that the sound speed of the modified equation of state increases
greatly over that of the Mie-Griineisen equation of state at the critical pressure.

In figure 4-6, we present the (z,t)-diagram, for the first experiment considered by
Barker and Hollenbach, see reference [5]. We note that the reflected rarefaction fan
is indeed much larger when compared with those obtained with the Mie-Griineisen
equation of state (compare with figure 3-3). We can also see from this figure that the
increase in sound speed brought about by this equation of state does indeed widen
the mixed simple wave reflected off the phase transformation, or wave W, In fact
this mixed simple wave is now wide enough that it does not break on its way to the
free surface. This in contrast to the behavior predicted to arise from a Mie-Griineisen
equation of state. This indicates that the approach used in this section does indeed
have the correct general effect on the behavior, though (as the next paragraph makes
clear) it is not enough to provide a complete agreement with the experimental data.
More work along this lines is needed, probably incorporating both the ideas hear and
the two-viscosity approach used earlier.

In figure 4-7 one sees the effect the modified equation of state has on three rep-
resentative free surface plots that correspond to regime B impacts. The interesting
result seen here is that the curvature of the theoretical plots near the beginning of the
second wave matches very well with the experimental ones. The agreement between
the two sets of curves in the second wave is not as good for later times. The fact that
the agreement between theoretical and experimental curves improved so much in the
initial region may be an indication that more investigation into the equation of state
near the critical pressure of austenite is warranted.

In the following chapter we present a new numerical scheme developed in the
course of working on this problem and used in the presentation of many of the results

in this chapter.
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Chapter 5

The Characteristic Tracking
Method

5.1 Introduction

In the previous chapter additional physical arguments were suggested for improving
the agreement between theory and experiment for a set of iron impact experiments.
Once each additional physical principle is put forth the resulting mathematical mod-
els are then implemented numerically. A new numerical scheme (the Characteristic
Tracking Method: CTM) that resulted from this investigation of solid—to—solid phase
transformations is presented here.

In this chapter we develop a numerical method for solving one-dimensional 2x2
nonlinear hyperbolic partial differential equations. The CTM scheme developed dur-
ing the investigations reported in chapter 1. There the need arose for accurate cal-
culations of interactions between rarefaction fans and discontinuous waves, including
shocks, contact discontinuities, and phase transformations. The characteristic track-
ing method has several important advantages over other methods currently in exis-
tence for the numerical solution of nonlinear hyperbolic systems. The CTM is very

accurate at following interfaces between two regions, since it can resolve discontinu-
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ities, fan edges, and boundaries between simple waves! to one node of accuracy. After
development we found the characteristic tracking method to perform extremely well

in practice.

5.2 Previous Numerical Methods

Numerical methods for nonlinear hyperbolic equations have had a long history. The
methods of Courant et al. [19] and Lax and Friedrich [44], developed in the early 1950s,
stand out as the first attempts at the numerical solution of problems of this type.
Since then a large number of schemes have been developed. The early approaches
relied on the application of finite difference techniques. Of particular importance is the
pioneering work of Lax and Wendroff [45, 46, 47] on space—centered schemes. This
work lead to several centered three—point schemes for one-dimensional hyperbolic
equations, a popular one being that of MacCormack [50].

Additional finite difference methods can be derived that relate more closely to
the physical propagation properties of the nonlinear hyperbolic equations. These
“non-space—centered” schemes can be classified as upwind schemes. The first ex-
plicit upwind scheme appeared in the work of Courant et al. [19]. Since then several
extensions have appeared [57]. The flux vector splitting methods of Steger and Warm-
ing [66] and Van Leer [48] can be considered upwind methods due to their directional
discretization of the flux derivatives.

A very original approach to the numerical solution of nonlinear hyperbolic prob-
lems was taken by Godunov [28]. He approached the solution to the global problem
by solving many local Riemann problems. This use of an exact nonlinear solution
locally to approximate the flow has lead to a host of schemes that introduce differ-
ent Riemann solvers [25, 61, 60, 56]. Several attempts have been made to extend
Godunov’s ideas to second order, see [16, 17, 29, 30, 31, 33, 34, 69, 70].

The principal difficulty encountered in the numerics of nonlinear hyperbolic sys-

tems stems from the fact that the mathematical equations themselves can develop

!Boundaries of this last type occur in the investigation reported in chapter 1 (see subsection 3.2.2).
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discontinuities in finite time from smooth initial conditions see [49]. These discontinu-
ities (shocks and contact discontinuities) are notoriously hard to resolve numerically.
Most of the schemes described above suffer their greatest difficulties around the lo-
cations of these moving interfaces. The numerical problems involved range from the
miscalculation of their speeds, to unphysical oscillations present before or after their
location, to excessive smearing of their wave profiles.

Many additional numerical schemes have been invented in an attempt to correct
for the problems mentioned above. One such idea, aimed at correcting oscillations
generated by the shock, is to introduce a non—physical viscosity into the governing
equations themselves [55]. Another approach aims at preventing the generation of
numerical oscillations before they occur. This approach is based on the concept of
non-linear limiters, introduced initially by Boris and Book [9] and Van Leer [68]. This
work eventually lead to the concept of total variation diminishing (TVD) schemes,
first introduced by Harten [29]. Many of these traditional ideas and concepts are
introduced and discussed in LeVeque’s book [49].

Based on the shortcomings mentioned above, some simple idealized requirements
that a numerical scheme for nonlinear hyperbolic systems should satisfy can easily be

stated. Namely:

1. Detection and resolution of the discontinuities as they are created, automat-
ically, without user intervention or a priori knowledge of the solution to the

equations.

2. The mathematical idea of a discontinuity (a jump over zero width) should be a
goal, in the representation of discontinuities in the flow. That is, the resolution
of discontinuities should be as exact as possible. Numerically this means using

as few computational grid points as possible for each discontinuity.
3. No oscillations around propagating discontinuities.

4. Discontinuities propagating with speeds that satisfy the Rankine-Hugoniot con-

ditions, and are therefore correct.
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5. Conservation of the appropriate quantities (mass, momentum, etc).

The characteristic tracking method satisfies all of the above requirements for the
numerical solution of one-dimensional nonlinear hyperbolic systems, as well as some
additional requirements that are not listed. For instance, certain applications, such
as the solution to conservation equations with non-convex equations of state, can
produce simple waves of different compressibilities traveling together?. When numer-
ically solving such systems, it is desirable to be able to keep accurate track of the
boundaries between the two different types of simple waves. This is possible with the

characteristic tracking method.

5.3 Mathematical Background

Here we present the numerical algorithm as it would be applied to the problem con-
sidered in chapter 1, written in Eulerian coordinates. The relevant equations (con-
servation of mass and momentum), are repeated here for ease of reference. They

are

0 0 0

B O 9\ _
5Pt AW =0, = (pu)+o—(pu’+p) =0, (5.1)

with p a known function of p. The relevant Rankine-Hugoniot conditions are
=S [p]+ [pu] =0, —S[pu] + [pu*+p] =0, (5.2)

where S is the speed of the discontinuity.

For this system a pair of Riemann invariants always exists, namely:

s = —% (u—1(p)), and 7":+% (u+1(p)), (5.3)

dx

where s is the left-going Riemann invariant (constant along the characteristics %7 =

u — c), while r is the right-going invariant (constant along % = u + ¢), and I(p) is

2For an example of such a situation see subsection 3.2.2.
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defined as
Pe P dp
o= [ Sao= [ F. (5.4)
p P

Notice that, since I'(p) = ¢/p # 0, p can be written as a function of /. Note also that
the mathematical equations themselves conserve the quantities s and r. This fact

will be explicitly enforced in the formulation of the characteristic tracking method.
u=r—s, l=r+s, (5.5)

so we can use s and r as independent variables if desired.

5.4 Description of the Algorithm

The algorithm described here relies heavily on the use of a Riemann solver. It will
be assumed that a Riemann solver for the hyperbolic system under consideration is
known. For the particular system of equations considered here (a mathematical model
of martensitic solid-to—solid phase transitions) , a Riemann solver was developed in
subsection 2.2.1.

The CTM algorithm is somewhat analogous to the original ideas of Godunov [49].
In Godunov’s work the flow is evolved indirectly by means of solving Riemann prob-
lems at the interface between two cells. In each cell an average value of the state
is defined. Then at each fired node® the flux is computed using the solution of the
corresponding Riemann problem. These fluxes are then directly used to update the
average state variables in a conservative way [28]. The averaging present in the first
step of Godunov’s method is what smears shocks.

As mentioned in subsection 2.2.1, the solution of a Riemann problem consists of a
left-facing and a right-facing wave, each of which can be either a shock or a rarefac-
tion fan. Vaynblat modified the ideas of Godunov’s slightly in his Ph.D. thesis [71],
permitting the computational grid to move when the solution of a particular Riemann

problem produces a sufficiently strong shock. With this modification the numerical

3In Godunov’s original work the grid used is stationary.
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grid follows discontinuities and only one grid point is needed to represent shocks®.
Vaynblat’s method, however, in the smooth regions of the flow, still relies on averaging
and a fixed numerical grid. In this manner it is very similar to the original Godunov
method. As a consequence, his resolution of rarefaction fans resulted in a smearing
of the fan edges. His algorithm also did not rely on the use of Riemann invariants
and as such did not implicitly enforce their conservation. In contrast the character-
istic tracking method relies heavily on the use of conserved Riemann invariants and
involves no averaging.

We state here the numerical goal of the algorithm as an aid in understanding the

definitions below.
A CTM flow will be defined as one in which:

1. The numerical approximation of the solution will consist only of
constant states. These constants states can be arbitrarily small in

regions of smooth flow.

2. These constants states are separated only by discontinuities that

travel at constant speeds.

Remark 5 When the flow consists of only discontinuities separated by constant states
(as specified above), the numerical solution is quite simple. First, propagate all dis-
continuities until two of them collide. At the point of their collision solve another
Riemann problem. If all waves produced from this Riemann problem are discontinu-
ous, we have evolved the flow forward in time and returned to the same qualitative
flow description that we started with: that of constant states separated by discontin-
uous waves (or a CTM flow). Assuming all Riemann problems encountered produce

discontinuous waves, the flow field can easily be evolved forward in time. The simple

4Vaynblat’s method is similar to the method of Harten and Hyman and borrows their idea of a
moving grid [32].
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Figure 5-1: Discretization of right-facing rarefaction fan with 6 constant state wedges
and 7 characteristic waves.

heuristic idea of “propagate until collision” can be applied over and over until the so-
lution has evolved to a desired time. This algorithm can no longer be continued once
a single Riemann problem produces a rarefaction fan. The question then arises, can
the heuristic approach of “propagate until collision”, be used (with modification) even

when fans are present.

If every wave (even continuous rarefaction fans) produced by a Riemann prob-
lem could be broken up one or many discontinuous “waves”, each moving at its own
constant speed, then the problem could be numerically solved according to the “prop-

agate until collision” strategy. The two questions that need answering then become

1. How to discretize continuous rarefaction fans into discontinuous “waves” satis-

fying the criterion above.

2. How to properly generalize any Riemann problem that involves these new

“waves”.

The answer to the first question is rather simple and will be discussed here. The
answer to the second question depends on the wave types that enter the interaction
and will be considered in subsections 5.4.2 and 5.4.3.

To motivate the answer to question number 1 we note that each fan can be drawn
in the (z,t)-plane as a sequence of characteristics (of the same family) stemming from
one point. The characteristics of the opposite family then cross the fan. From the

definition of a simple wave, the invariant associated with these crossing characteristics
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is constant. The discretization we choose explicitly enforces this observation. We
require that the jump in the continuous invariant across each inserted wave is zero.
As an example assume that we have a right-facing rarefaction fan, see figure 5-
1. In this case the left invariant s = sy is constant throughout the fan, while the
right-facing invariant decreases from the value 7, (on the right, or head of the wave)
to r; (on the left, or tail of the wave). Next we discretize this fan into N wedges of
constant states. The jump in the right-going invariant, r, in moving from one wedge
to the next, is given by Ar = =2k, Thus the state in the i-th wedge is (so, 7n + A7)
where 7 is counted from the head of the fan (starting at zero), towards the tail (where
it takes the value N + 1), see figure 5-1. Between the i-th and i + 1-st wedge, we
insert a characteristic wave® traveling at the speed of sound given by a state that is

the average of the state in i-th and ¢ + 1-st wedges. That is the sound speed in the
state given by

1 1 A
(5(50+80),§(rh+Arz’+rh+Ar (z+1))> = <50,7~h+Am+7r) _

At this time the continuous centered rarefaction fan is now replaced by N + 1 char-
acteristic waves, moving to the right, separated by N wedges of a constant state. For
a left-facing rarefaction fan the procedure used to discretize is similar.

To help in the presentation of the answer to question number 2, we make the

following definitions.

e A numerical characteristic wave is a propagating discontinuity such that the
jump in one invariant across it is zero. In a sense the numerical characteristic
wave is like a true characteristic in that when the difference in states across it
shrinks to zero, it becomes a true characteristic of the flow field. These are the
waves used in the discretization of rarefaction fans. This is in contrast to what

we now define as a numerical discontinuity wave.

e A numerical discontinuity wave is a propagating discontinuity in which both

5To be defined later but for now simply think of this as a characteristic.
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Riemann invariants jump upon crossing the wave. Intuitively a discontinuity
wave is similar to a shock wave but is not restricted to this. Depending on the
system of equations, other waves can be classified as numerical discontinuity

waves for example, a contact discontinuity or a phase transformation.

With these definitions we are ready to describe the numerical algorithm. From
whatever initial condition we are interested in, we construct, using cell averaging
perhaps, an initial condition consisting of piecewise constant data. To start the
numerical solution we next solve the Riemann problem at each cell interface, with
the given Riemann solver. The solution of each Riemann problem introduces two
waves, one left-facing and one right-facing. On average, half will be rarefaction fans
and the other half shocks. Shocks are discontinuities that carry a jump in both
invariants and are therefore discontinuity waves without modification. A rarefaction
fan is however continuous. The discretization introduced above is applied to each
rarefaction fan and a CTM flow results.

After we have discretized all fans produced by the initial Riemann problems, nu-
merically all output from each Riemann problem is of the same type: either charac-
teristic or discontinuity waves (or both). Each of these waves is traveling at a known
velocity from a known point of origin. As the velocities are constant, these waves are
represented in an (z,t)-plane as straight lines. The time at which the first pair of
waves collides from two neighboring Riemann problems can be calculated by simply
finding the minimum, in time, of pairwise intersection of each pair of straight lines.
Because of our chosen discretization of fans the solution of the flow is approximated
by a sequence of constant states and waves and is therefore a CTM flow. At the point
where the first two neighboring waves collide we have yet to explain how to continue
the flow further. What we do depends on the type of numerical waves involved in the

collision. The types of possible collisions are as follows:
1. The two colliding waves are both discontinuity waves.

2. The two colliding waves are both characteristic waves.

99



3. The two colliding waves are of different types: one is a discontinuity wave and

the other is a characteristic wave.

Remark 6 If the manner in which we resolve each collision produces only character-
wstic waves or discontinuity waves or both, the numerical solution after this collision
s again a CTM flow and can be evolved forward in time by again looking for the ear-
liest wave collision. Thus we have generalized the heuristic idea of “propagate until
collision” discussed above, if we can insure that the results of the three intersection

types produce only characteristic waves or discontinuity waves.

In the next subsections we consider specifically how to resolve the interactions defined

above.

5.4.1 Collision of Two Discontinuity Waves

In this situation both waves that make up a collision are discontinuity waves. At the
exact instant of collision we have two constant states separated by a discontinuity. We
compute the solution to the Riemann problem here using the given Riemann solver
and discretize any fans that result as explained above. Following this procedure at the

end of this interaction we will again have a C'TM flow, and the algorithm continues.

5.4.2 Collision of Two Characteristic Waves

In this case we consider the situation where the two waves colliding are both charac-

teristic waves. Two sub-cases become important see figure 5-2.

1. The two characteristic waves that collide are of different families, i.e., the wave

collision is head-on.

2. The characteristic waves are of the same families, i.e., one wave in the pair is

overtaken.

If the characteristic waves colliding are of different families, situation 1, we proceed

as follows. At the collision point we construct two “outgoing” characteristic waves:
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Figure 5-2: Collisions of characteristic waves. A head-on collision (left). An overtak-
ing collision (right). Characteristic waves are drawn with dashed lines.

one left-facing characteristic wave and one right-facing characteristic wave, with a
“middle” wedge (state) separating the two outgoing waves. See figure 5-2 (left) for
notations. Across the outgoing left-facing characteristic wave, W2, the right-facing
Riemann invariant is constant. Similarly across the outgoing right-facing characteris-
tic wave, W§, the left-facing Riemann invariant is constant. We can then numerically
compute the state in this middle wedge by taking corresponding invariants from the

left and the right states. The middle state is then given by

(SM,T'M) = (SR,TL) .

The velocities of the outgoing characteristic waves W and W§ are computed from
the sound speed taken from averages of this newly computed middle state and the
left and right states. For example, the velocity of W2 is taken to be the sound speed
in the state given by

2 2 2

(SL+8M 7‘L+7“M> _ <5L+3R’TL> ’ (5.6)

and the speed of the WS wave is taken to be the speed of sound in the state corre-

SM+SR TM+’I"R N 7'L+7'R
(2ton tutrn) _(,, ruten) 5

sponding to
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If instead the characteristic collision involves characteristic waves of the same
family, situation 2, we have a discretized version of two characteristics of the same
family colliding. When this occurs in nonlinear hyperbolic systems a shock is born
and needs to be inserted into the (z,t)-plane at the location of the collision. These
two characteristics then converge on this shock. The numerics models this procedure
exactly. As an example we consider the case when the two characteristic waves are
right-facing, see figure 5-2 (right) for notations. At the point of the collision we
produce two outgoing waves, a characteristic wave and a discontinuous wave. The
outgoing right-facing wave representing the inserted shock will be a discontinuity
wave and the left-facing wave will be a characteristic wave of the opposite family of
the incoming characteristic waves. The middle state (sps,75s) in this configuration
is computed as follows. Across the outgoing left-facing characteristic wave the right-
going Riemann invariant is constant, this requires r,; = 7. From the two Rankine-
Hugoniot (5.2) equations applied to the discontinuity wave we can eliminate the

velocity of the wave and obtain the following equation

ug — uy = —+/(vr — var) (Par — PR) - (5.8)

If we write this equation in terms of the invariants in the middle state (sps, ) we

get the following

UR—T’M+SM:—\/(VR—V(1M)) (p(lM)—pR), lM:T’M+SM. (59)

Here we recognize that the specific volume vy and the pressure p,; are functions of
lpr which is given directly by the sum of invariants. This gives one equation for one
unknown s,;. This equation can then be solved numerically for the unknown s,,.
Once both sy, and 7y, are known one of the equations (5.2) can be used to calculate
the speed of the shock.

The speed of the outgoing left-facing characteristic is given by the sound speed of
an average state between (s, rr) and (su, 7a7) in a manner the same as presented in

the explanation of a head-on collision of two characteristic waves, see equation (5.6).
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Figure 5-3: Numerical waves that are produced by a characteristic shock intersection
(left) and a characteristic contact discontinuity intersection (right). Characteristic
waves are drawn as dashed lines. Discontinuity waves are drawn as solid lines. The
plot on the right can represent either a collision between a characteristic wave and a
contact discontinuity or the collision between a characteristic wave and a right-facing
phase transformation.

5.4.3 Collision of a Characteristic Wave and a Discontinuity

Wave

Here we consider the situation where one of the incoming waves is a discontinuity
wave and the other is a characteristic wave. The exact results obtained depend on
the true characteristic structure of the actual wave represented by the discontinuity
wave and the direction that each wave is traveling when it collides. We consider
several examples to demonstrate the procedure used in each case.

Consider a right-facing shock that collides with either a left-facing or a right-
facing characteristic wave. The characteristic structure of a right-facing shock is such
that the C', characteristics converge on the shock from both sides, while the C_
characteristics pass through. After the collision, independent of the original direction
of the characteristic wave, we produce a right-going shock and a left-facing or C_
characteristic wave. For an example of a head-on collision see figure 5-3 (left). The
state and velocities of the waves that are produced are constructed exactly as in the
case where two characteristic waves of the same family collide, see subsection 5.4.2.

As a second example consider the case that occurs when the discontinuity wave is
formally a contact discontinuity. The characteristic structure of a contact discontinu-

ity is that the true characteristics from both families pass through the wave. When
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one of the numerical characteristic waves and a contact discontinuity collide the result
of the collision is a left-facing characteristic wave, a right-facing characteristic wave
and a central contact discontinuity. This structure is shown in figure 5-3 (right). To
fill the states we proceed as follows: across the outgoing left-facing characteristic wave
the right Riemann invariant is constant, and across the outgoing right-facing charac-
teristic wave the left-going Riemann invariant is constant. This give two conditions

for the “middle” invariants

ML =TL, SMR = SR - (5-10)

Across the contact discontinuity two equations hold

p(lur) = p(lur) , UML = UMR - (5.11)

When written in terms of the invariants on either side of the contact, we obtain the

following

p(Smr + rvr) = p(Smr + TMmR) 5 (5.12)

and

TML — SML = TMR — SMR - (5.13)

The second equation can be solved for an unknown, either sy, or r3sg, here we solve

for rarr and substitute this relation into equation (5.12) obtaining

p(Smr +7rmr) = (2 Smr — Sy + TmL) - (5.14)

This is one equation with one unknown, s;;;,. When this unknown is determined
the states between all the waves are now specified. The contact discontinuity travels
at the particle velocity which is known at this stage, while the velocities of each
characteristic wave can be computed in the same way as they are in the head-on
collision of two characteristics, see equations (5.6) and (5.7).

Other types of discontinuous waves besides shocks and contact discontinuities
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Figure 5-4: (x,t)-diagram for Barker-Hollenbach experiment number 1.

can be treated in a similar manner. For example, in chapter 1 the characteristic
tracking method is used to solve the hyperbolic equations in an investigation of phase
transitions in iron. There a type of “under-compressed” shock wave is found. The
characteristic structure of these waves is such that the characteristics of the same
family converge onto it from behind but not from ahead (see figure 2-4 (b)). As an
example of the procedure used when the discontinuity wave is a phase transformation,
consider the treatment of a head-on collisions. The result of this collision is three
different waves: a characteristic wave of each family and a phase transformation wave.
In this situation the character of the wave interactions looks exactly the same as that

seen when a characteristic wave collides with a contact discontinuity, see 5-3 (right).

5.5 Numerical Results

As we said earlier, the characteristic tracking method was implemented for the hy-
perbolic system that arises in the study of martensitic phase transformations under

shock loading. Here we present some of the numerical results obtainable. Since much
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Figure 5-5: Magnified portion of (z,t)-diagram where the left-facing rarefaction fan
and the forward transformation front interact.

of the background for this particular application has already been given in chapter 1,
we will refer the reader to the exposition found there. Here we present results for the
first experimental setup of Barker and Hollenbach. In this experiment all the various
types of wave interactions the characteristic tracking method is designed to deal with
can be seen. We first present an (z,t)-plot of all wave interactions, in figure 5-4.
Here one can see both discontinuous waves and characteristic waves. Refer to the key
presented on page 48 for an explanation of the line markings used in this plot. One
can clearly see the locations and widths of the centered rarefaction fans and simple
waves. Since the most interesting effects take place when the reflected fan interacts
with the right-facing forward transformation wave, we show this region magnified in
figures 5-5 and 5-6, and spend some time discussing it.
In figure 5-5 we see that the interaction of the rarefaction fan and the forward
transformation front produces several waves. A left-facing and right-facing simple
wave are present along with a backwards phase transformation. The simple waves

are visualized as groups of left-facing or right-facing characteristic waves. Constant
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Figure 5-6: A further magnification of the interaction region. Horizontal lines repre-
sent the times pressure profiles were printed in figures 5-7 and 5-8

regions are see in pure white.

It is interesting to observe that the right-facing compressive wave breaks on its
way to the free surface. The code produced the shock seen in figure 5-5 by detecting
the crossing of two right-facing characteristics and inserted a shock. After the shock
is born, later characteristic waves converge on it from behind and the numerical code
produces left-facing characteristics waves as the result of the shock characteristic wave
collisions (see subsection 5.4.3). In some regions the characteristic waves are spread
far apart while in others they are much closer together. In the regions where they are
much closer together the state variables change more rapidly.

To show the codes ability to capture the features around this interaction discussed
above we have plotted the pressure as a function of z at ten different values of time.
The values of time where pressure profiles are plotted are represented graphically
on the (z,t)-plot in figure 5-6 as horizontal lines. The sequence of pressure plots is

presented in figure 5-7 and 5-8. Please refer to the captions there for an explanation.
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Figure 5-7: Sequence of timeslices of the pressure as a function of the spatial loca-
tion z. The times at which these pictures were produced correspond to these repre-
sented graphically in figure 5-6 as horizontal lines. Plots are numbered from left to
right, top to bottom. In plot ¢; the left-facing rarefaction fan is propagating towards
the right-facing forward phase transformation front. In plot ¢, the two waves have
just collided and some of the rarefaction fan has transmitted through the forward
transformation front. In plot ¢3 more of the rarefaction fan can be seen behind the
forward phase transformation font, the forward phase transformation front itself has
weakened in magnitude, and the compressive simple wave that is reflected from this
transformation front can also be seen as a slight change in the slope of the p(x) curve
ahead of the transformation front. In plot ¢4 the forward transformation front has
weakened to the point that it must change types and is now a contact discontinuity.
In plot t5 the contact discontinuity has now become a weak left-facing backwards
transformation front and the reflected simple wave from the interaction in beginning
to steepen. In plot tg the full structure of the reflected composite simple wave is
present.

108



3.5 4.125 4.75 5.35 6 6.625 6 6.625

x (mm)

10 |

p (PGa)

o L L L L L L L L L o
3.5 4.125 4.75 5.375 6 6.625 3.5 4.125 4.75 5.375 6 6.625

x (mm) X (mm)

Figure 5-8: Sequence of timeslices of the pressure as a function of the spatial loca-
tion z. The times that these pictures were produced correspond to these represented
graphically in figure 5-6 as horizontal lines. Plots are numbered from left to right, top
to bottom. In plot ¢; the right-facing compressive wave continues to steepen (from
the profile shown in plot tg). In plot tg this right-facing compressive wave breaks and
the numerics inserts a shock. In plot ¢y the following pieces are clearly visible: the
two components of the transmitted simple wave, the backwards phase transformation,
the three components of the reflected simple wave. Plot ¢;, corresponds to a time
slightly before the newly developed shock strikes the free surface.
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Chapter 6

Conclusions

The problem of determining the details of what happens when iron is shock loaded
is a difficult one. Direct controlled measurements are impossible to make under the
huge pressures a phase transformation requires. The only measurements that can be
made (at this time) are point measurements of the free surface velocity of an iron
sample, where a shock wave causes the large pressures needed to trigger a phase
transformation. Accurate modeling of the physics taking place in this situation is
very difficult, since there is a multitude of effects that can be taking place inside
the material — as the phase transformation occurs. These include the existence of
regions in the sample with a mixture of phases, or where the transformation is only
“partial”.

The Bruno-Vaynblat model provides a simple approach to the problem, using
only wave concepts in the modeling of martensitic phase transformations. Its formu-
lation does not include complicated and hard to model effects — especially involving
poorly understood physical processes, requiring the introduction of difficult to mea-
sure physical constants or functions. Even so, it is able to capture quite well the
coarse fundamental effects observed in the experiments — as showed in chapter 3 of
this thesis, where the model was implemented without the rarefaction discontinuity
simplification that Bruno and Vaynblat used.

In order to increase the agreement between the Bruno-Vaynblat model and the

experiments, some additional physics is needed. In this thesis we explored the effects
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of adding to the model two new physical processes. These are: dissipation, and a
modification of the equation of state near the critical transition pressure (for the

austenite phase). The results of these modifications are as follows:

e Addition of dissipation: In this case we were able to obtain a very close match
with the experimental observations. It is important to note that this match was

obtained with all the experiments, using only two fitting parameters.

e Modification of the austenite equation of state, near the critical pressure: This
also produces theoretical free surface velocity plots that agree quite well (for
regime B impacts) with the observations, using only one fitting parameter. It
will be left for future research to see if better predictions can be obtained by

implementing more careful (local) modifications to the equation of state.

The results above indicate that both: a better understanding of how dissipation
operates in the phase transition regime, and better measurements of the austenite
equation of state (near the critical pressures) are needed to obtain better agreement
between theory and experiments.

Finally, we point out that, in order to fully implement the Bruno-Vaynblat model
(see chapter 3), a new numerical algorithm (capable of accurate and efficient calcula-
tion of the wave interactions that occur) was developed. This new scheme proved to
be a very robust, stable and accurate method for the numerical solution of hyperbolic
problems with standard and non-standard equations of state such as the ones used

in this thesis to model phase transitions.
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Appendix A

Lagrangian Formulation

Here we summarize some useful formulas, valid for the equations of motion in La-

grangian form (2.2). The quasi-linear matrix form of these equations is

o[ p 0C*\a([vp
)00)R(E) e

where C' = —3—5 > 0 is the acoustic impedance. The characteristic form for these

equations is

0 0 0 0
—p—C—p— —u—C— = A2
5:P Cpr C(@tu C(?fu) 0 (A.2)
0 0 0
_ _- _ — = A
8tp+06§p+0<6tu+08§u> 0 (A.3)
Equivalently:
d d d
P~ C%u =0 along P -C, (A.4)
d d d
2P + C’au =0 along pri +C'. (A.5)

112



These can be written in Riemann Invariant form as

d d
prili 0 along pri -C, (A.6)
d d
P 0  along pTa +C. (A7)
where
. d
s = u—I(p) is constant along 7t = -C, (A.8)
r = u+I(p) is constant along %x =+4C. (A.9)
We have defined I(p) as
)= [ "dp (A.10)
=] ¢ '

The two variables s and r are called the Riemann invariants.

The Rankine-Hugoniot jump conditions are
—Sp[v] —[u] =0, and —Sp[ul+[p] =0, (A.11)

where “[ |7 denotes the the jump in the enclosed quantity across the shock. That
is [Q] = Q° — Q?, where Q° (Q%) is the limiting value of @ behind (ahead) of the
discontinuity and Sy, is the speed of the discontinuity in the Lagrangian coordinate
system. Physically |S.| is the mass flux through the discontinuity. Manipulations of
the equations (A.11) give the 1-shock (resp. 2-shock) front equations

SL=F/— and [p] = SL[u] . (A.12)

Rarefaction fans are defined as flow in which one Riemann invariant is constant. From

equations (A.8), (A.9), and (A.10) the velocity behind a rarefaction fan is given by
P’ dp dp
ubzu“:F/pa ok with c=\—g (A.13)
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Appendix B

Mie-Gruneisen Equation of State

Quantitative predictions follow from the Bruno-Vaynblat model only after explicit
constitutive relations (of the type required in equation (2.4)) are specified. We note
that the conservation laws in (2.1) and (2.2), require an equation of state in the form
of a relation p = p(v), for each phase. This type of equation of state is often called
incomplete [54], because it does not involve any temperature dependence. Here we
will use approximations for p = p(v) obtained directly from experimental results. In
truth p is a function of other variables as well (for example temperature), but the
dependence on these other variables is so weak that we may safely neglect them.
The function p(v) is determined experimentally as follows. Just as in the flyer-
plate experiments described in chapter 1 a piece of the material under study is held
stationary while an impactor is fired and undergoes a collision with the sample. This
collision produces a shock wave that travels through the sample. The two measured
quantities are the time at which the shock strikes the free surface, tg, and the velocity
u, the shock imparts to the free surface after its collision. From the known thickness

of the sample, h, one can determine the velocity of the shock from the equation

h
S=—. (B.1)
ts

Experimental measurements of this sort, done for a great number of materials (solids

and liquids) show that, in a plot of S v.s. u,, the data points lie along a straight
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Figure B-1: The (Usg, up)-diagram for AISI-304 stainless steel. The squares denote indi-
vidual experimental measurements.

line. Figure B-1 shows a representative example of a sequence of these measurements
for AISI-304 stainless steel. The data can be approximated with great accuracy by a

relationship of the form

S =cy+sup, (B.2)

where ¢y and s are fitting parameters. The target block in these experiments has
properties characterized by p = 0, v = 0, and p = py, all known quantities. From these
expressions, and the mass and momentum Eulerian jump conditions in equation (2.9),

one can derive the following expression for the pressure

2
PoCy N
= B.3
where 7 is defined by
p=1-2_-1_21 (B.4)
P1 Vo
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Po Co § Perit
Phase | (Mg/m?) | (km/s) (GPa)
a-iron 7.874 4.63 1.33 | 13.0
€-iron 8.721 3.20 | 2.30 9.8

Table B.1: Material constants for « and € iron.

This empirical fit is known as the Mie-Grineisen equation of state. We note that
this functional form of the equation of state can also be derived heuristically from a
classical standpoint (see [39)]).

The expression 7 is called the deformation and represents the amount of compres-
sion felt by the sample, it is 0 under no deformation, negative when the deformation
is expansive, and positive when the deformation is compressive.

In most of this thesis, with an appropriate choice of coefficients (see table B.1),
we used (B.3) as the equation of state. The material constants in the table follow

from the available experimental data for a-iron and e-iron (see [14]).

Remark 7 We should state that for a—iron the fitting constants cy and s are well
documented and the values shown above were taken from [4]. The data for e—iron
s more uncertain. Several different sets of parameters have been used in the liter-
ature [58, 12]. In addition to the e—iron phase most data also represent the y—iron
phase. To avoid error in using data that might misrepresent the e—iron equation of
state, only data that corresponded to e—iron was used. Specifically the (u,, S) data was

taken from [52], where a linear fit gave the numbers given in table B.1.

Remark 8 A great deal of uncertainty exists as to the values of peir, See [36, 51, 6].
The values for the forward transformation at room temperature range from9...15GPa
while those of the backwards transformation range from 7...10 GPa. The value of
the forward transformation is most closely similar to the one reported on in [2]. The

value of the backwards transformation corresponds to the same value used by Bruno

and Vaynblat [14].

Figure 3-7 on page 57 shows an example of a typical (v, p)-plot for a Mie-Griineisen
equation of state. There one sees the two branches, with the upper branch correspond-

ing to martensite and the lower branch to austenite.
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Appendix C

Conservation of Momentum

Discretization

In this appendix we present the semi-discrete equations for the conservation of mo-
mentum, used in the numerical solution of the model for shock induced phase tran-
sitions, as modified by the addition of dissipation — see subsection 4.2.1. We use
the following cell centered approximations for the first order space derivatives that
appear in equation (4.5), which follow from using centered differences:

o &y t) — a1, t) o _plit) = pit)

8_§u(§z+%) ~ 2AE and 3_§p(§i+%’t) ~ AE

(C.1)

Similarly, for the viscous term we use the spatial discretization:

0 (10u 1
%(58_5)“&52

In all cases the terms on the right hand sides of the expressions are defined in their

ﬂ(§i+;, t) - ﬂ(fi—l—l’t) ﬂ(£i+lﬂ t) - ﬂ'(é-i—lat)
2 2 _ 2 2 ) C.
&) & (©2)

natural domains (node centered densities and cell centered velocities). With these ap-

proximations, the semi-discrete equation for the conservation of momentum (correct
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up to second order in A) is then:

0 - _ (1 B 62) ‘ém—l + gz Sm ﬂ(fﬂ'%’t) B ﬂ'(é-i*%’t)
gy 0 = (VS ziin) Sk
1 p(€i+17t) _p(é.iat) I 1
- <5m - 5m1> A§ * (Sm - 5m71)2 A—f 8

1 a(§i+%7t) - a(gz’—k%at)
V(fi—f—%vt) A§

_ 1 ﬂ(fﬂ_%,t) - ﬂ(fi—%at)
v(&i,t) Ag '
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Appendix D

Summary of the Interface
Boundary Conditions used in the

Viscous Code

In chapter 4 a numerical code is developed for the viscous Lagrangian conservation
of mass and momentum equations (4.2), for a region containing several domains
separated by moving discontinuities. In subsection 4.2.2, boundary conditions were
derived for the nodes and cells around the interface between two domains. Here we
summarize the semi-discrete and fully discrete equations used at each node and cell
near the interface. See figure 4-3 (page 76) for the names of the cells and nodes used
here. We note that in the problem the forward transformation front is right-facing
while the backwards transformation front is left-facing. In this case we present a

summary of the equations used for each variable around the interface.

1. If the interface is a forward transformation front.

e Update vy using the conservation of mass jump condition

§(vn —vi) + (%(ﬁN +ln_1) — %(1‘10 + 1‘11)) =0.
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Update uy using first order extrapolation of velocity

Uy — 2Un_1 —Uy_o=20.

Update s using the conservation of momentum jump condition
(1, _ .
8 | v +an-1) = S(@o+a) | — (p(vy) = p(v1))

WoofUn —UN_1 U — U
£ - =0.
N ( VN )

Vi

Update u, using first order extrapolation of velocity

ﬂ0—2ﬂl—ﬂ220.

Update v; using the critical condition

p(vi) — pcArit =0.
2. If the interface is a contact discontinuity.

e Update vy using the conservation of mass partial differential equation, in

domain A evaluated at the local node £ = 1.

EV— 1 ﬁN—ﬁN_l_O
Dt N s—&g A

e Update uy with the conservation of mass jump condition

1 1
E(ﬂN+ﬂN_1)—§(’U,0+’UJ1)=O.

e Update s with

ds
dt
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e Update 1y with the conservation of momentum jump condition

B fUN —UN-—1 U — U
— (p(vy) = (V1)) + — =0.
(o) = pw) + £ (B B
e Update v; using the conservation of mass partial differential equation in
domain B, evaluated at the local node £ =0

D 1 1y —1p

EVl_gR—S Ag =0.

3. If the interface is a backwards transformation front.

e Update vy with the critical pressure condition

p(vN) — Dot = 0.

Update uy with first order extrapolation of velocity

Uy — 2Un_1 — Un_o =0.

e Update s using the conservation of momentum jump conditions
(1, _ .
s §(UN +Uy 1) — §(u0 +141) ) — (p(vy) = p(v1))
B [UN—UN—1 UL — U
+ = — =0.
Ag ( VN Vi )
e Update 4y using first order extrapolation of the velocity
Uy — 21 — Uy = 0.
e Update v; using conservation of mass jump condition

$(vn —vi) + (%(ﬁN +1ln-1) — %(ﬁo + 1_11)) =0.
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With this specification of the equation used at every node to update the local
value, the numerical scheme is well defined and can be implemented. Care must be
taken to insure that, when the interface changes type, these changes are detected and

the correct equations are used.
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