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Introduction

This is a solution manual for some of the problems in the excellent numerical analysis
textbook:

Numerical Analysis: Mathematics of Scientific Computing
by David Kincaid and Ward Cheney

This solution manual was prepared form the first edition of the textbook.

I’m currently working on finishing more of the problems in this book. In the meantime I’m
publishing my partial results for any student who does not want to wait for the full book to
be finished.

One of the benefits of this manual is that I use the R statistical language to perform any of the
needed numerical computations (rather than do them ”by-hand”). Thus if you work though
this manual you will be learning the R language at the same time as you learn statistics.
The R programming language is one of the most desired skills for anyone who hopes to use
data/statistics in their future career. The R code can be found at the following location:

http://waxworksmath.com/Authors/G_M/Kincaid/kincaid.html

As a final comment, I’ve worked hard to make these notes as good as I can, but I have no
illusions that they are perfect. If you feel that that there is a better way to accomplish
or explain an exercise or derivation presented in these notes; or that one or more of the
explanations is unclear, incomplete, or misleading, please tell me. If you find an error of
any kind – technical, grammatical, typographical, whatever – please tell me that, too. I’ll
gladly add to the acknowledgments in later printings the name of the first person to bring
each problem to my attention.
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Chapter 2: Computer Arithmetic

Stable and Unstable Computations; Conditioning

Notes on Numerical Instability

Now if x is single precision then when x1 = 1

3
the absolute error in representing x1 in a

computer will be of order 10−8. Note that in the formula used to compute xn+1 from xn and
xn−1 we are multiplying xn by 13

3
at each iteration. Thus the absolute error will grow by a

factor of 13

3
at each iteration.

• This means that x2 has an absolute error of
(

13

3

)

10−8.

• and x3 has absolute error
(

13

3

)2
10−8,

• and x4 has absolute error
(

13

3

)3
10−8.

Continuing this logic we see that xn has absolute error of
(

13

3

)n−1
10−8. To make the absolute

error in xn = O(10) which would make the calculation worthless since the actual answer is
(

1

3

)n
and we would have a complete loss of all significant digits we would need

(

13

3

)n−1

× 10−8 ≈ 101 ,

or
(

13

3

)n−1

≈ 10+9 ,

or solving this for n we find

(n− 1) ≈
9 log 10

log
(

13

3

) = 14.13268 .

Thus n ≈ 15.13268 so it takes around fifteen iterations before we have an absolute error or
O(10) (which is what we see in the example in the book).

If we use double precision instead of single precision then absolute error in represengint
x1 =

1

3
in a computer will be O(10−16). This means that the absolute error of iteration n for

xn will be so large as to render the computation “worthless” when
(

13

3

)n−1

× 10−16 ≈ 101 .

Solving this for n we find

n− 1 ≈
17 log 10

log
(

13

3

) = 26.69505 .

Thus when n ≥ 27.69505 all precision is lost.
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Chapter 9: Numerical Solutions of Partial Differential

Equations

First-Order Partial Differential Equations; Characteristic Curves

Problem 1

Part (a): From the given differential equation the method of characteristics would seek
functions x(s), y(s), and u(s) such that

dx

ds
= 1

dy

ds
= x

du

ds
= 0 ,

with the initial conditions

x(0) = 0

y(0) = r

u(0) = f(r) .

Integrating the differential equation for x(s) gives x(s) = s. Integrating the differential
equation for u(s) gives u(s) = u(0) = f(r). Using these in the differential equation for y(s)
gives

dy

ds
= s ,

or

y(s) =
s2

2
+ r .

Now from x = s and y = s2

2
+ r we have r = y − x2

2
so that u = f(r) becomes

u = f

(

y −
x2

2

)

,

for the solution u = u(x, y).

Part (b): From the given differential equation the method of characteristics would seek
functions

dx

ds
= 1

dy

ds
= 2u

du

ds
= 0 ,
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with initial conditions given by

x(0) = 0

y(0) = r

u(0) = f(r) .

Integrating the differential equation for x(s) we find x(s) = s. Integrating the differential
equation for u(s) gives u(s) = u(0) = f(r). Using these in the differential equation for y(s)
gives

dy

ds
= 2f(r) .

Integrating we get
y = 2f(r)s+ C ,

for C a constant. Using the initial condition y(0) = r gives C = r so

y = 2f(r)s+ r .

Thus the solution is represented in parameterized form as

x = s

y = 2f(r)s+ r

u = f(r) .

Part (c): From the given differential equation the method of characteristics would seek
functions

dx

ds
= x

dy

ds
= 2y

du

ds
= 0 ,

with initial conditions given by

x(0) = 1

y(0) = r

u(0) = f(r) .

Integrating these three equations gives

x(s) = C1e
s

y(s) = C2e
2s

u(s) = C3 .

Using the initial conditions to evaluate the constants C1, C2, and C3 when s = 0 we get

x(s) = es

y(s) = re2s

u(s) = f(r) .
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The first two of these equations combine to give

y = rx2 or r =
y

x2
.

This means that
u = f

( y

x2

)

,

for the solution u = u(x, y).

Problem 2

We are given the differential equation

ux + yuy = 0 ,

with the initial condition of

u(18, 3e) =
kπ

2
.

The method of characteristics seeks to find functions x(s), y(s), and u(s) such that

dx

ds
= 1

dy

ds
= y

du

ds
= 0 ,

with initial conditions given by

x(0) = 18

y(0) = 3e

u(0) =
kπ

2
.

If we integrate the above and use these initial conditions we get

x(s) = s + 18

y(s) = 3es+1

u(s) =
kπ

2
.

If we seek to evaluate u(17, 3) then we first need to find s such that

s+ 18 = 17

3es+1 = 3 .

Both of these equations are true when s = −1. Using the solution for u(s) above we see that
u(−1) = kπ

2
.
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Problem 3

The differential equation in Example 8 is

xux + yuuy = xy ,

with the boundary-values of

u(x, y) = 2xy when xy = 3 .

The solution found there was

u(x, y) = −1 +
√

43 + 2xy .

From this note that

ux =
2y

2
√
43 + 2xy

=
y√

43 + 2xy

uy =
2x

2
√
43 + 2xy

=
x√

43 + 2xy
,

so that
xux + yuuy =

xy√
43 + 2xy

+
xyu√

43 + 2xy
=

xy√
43 + 2xy

(1 + u) = xy ,

as it should to be a solution. Next if xy = 3 note that

u(x, y) = −1 +
√
43 + 6 = −1 + 7 = 6 = 2xy ,

again as it must.

Problem 4

The differential equation in Example 6 is

6ux + xuy = y ,

with the boundary-values of
u = ex sin(y) ,

on the curve y = x3. The method of characteristics seeks to find functions x(s), y(s), and
u(s) such that

dx

ds
= 6

dy

ds
= x

du

ds
= y ,
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with initial conditions given by

x(0) = r

y(0) = r3

u(0) = er sin(r3) .

Integrating the differential equation for x(s) we find x(s) = 6s+C for C a constant. Applying
the initial conditions x(0) = r we find C = r so x(s) = 6s + r. Using this in the equation
for y(s) we find

dy

ds
= 6s+ r .

Integrating the differential equation for y(s) we find y(s) = 3s2 + rs+D for D a constant.
Applying the initial conditions for y(s) we find y(s) = 3s2 + rs + r3. Using these, we have
that the differential equation for u(s) is given by

du

ds
= 3s2 + rs+ r3 .

Integrating this we get

u(s) = s3 +
rs2

2
+ r3s+ E ,

for a constant E. Applying the initial conditions for u(s) gives

u(s) = s3 +
rs2

2
+ r3s+ er sin(r3) .

Thus the solution is represented in parameterized form as

x = 6s+ r

y = 3s2 + rs+ r3

u = s3 +
rs2

2
+ r3s+ er sin(r3) .

We are told that (1, 1) is on the same characteristic as (7, 5). This means that

1 = 6s+ r

1 = 3s2 + rs+ r3 ,

for some r and s. Note that s = 0 and r = 1 satisfy the above system. Now if (7, 5) is on
the same characteristic then there needs to be a value for s such that

7 = 6s+ 1 (1)

5 = 3s2 + s+ 1 , (2)

Now Equation 1 is satisfied by s = 1 and that this value of s also satisfies Equation 2. The
value of u at (x, y) = (7, 5) is then given by

u = s3 +
rs2

2
+ r3s + er sin(r3)

∣

∣

∣

∣

s=1,r=1

= 1 +
1

2
+ 1 + e sin(1) =

5

2
+ e sin(1) .
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Problem 5

Equation 7 in the book is
ux + cuy = 0 ,

which can be written as
d

dx
u(x, y(x)) = 0 ,

if
dy

dx
= c .

Next equation 15 in the book is
ux + yuy = 0 .

If we parameterize characteristic in (x, y) as function of a variable s as x = x(s) and y = y(s)
then taking the s derivative of u can be expressed as

d

ds
u(x(s), y(s)) =

dx

ds
ux +

dy

ds
uy .

This will equal the given differential equation if dx
ds

= 1 and dy

ds
= y.

Problem 6

Example 7 in the book is
6ux + xuy = y ,

with u(x, y) = 4 when x = y. The method of characteristics seeks to find functions x(s),
y(s), and u(s) such that

dx

ds
= 6

dy

ds
= x

du

ds
= y ,

with initial conditions given by

x(0) = r

y(0) = r

u(0) = 4 .

Integrating the differential equation for x(s) and enforcing the initial conditions we find

x(s) = 6s+ r .
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This means that the differential equation for y(s) is given by

dy

ds
= 6s+ r .

Integrating and enforcing the initial conditions we find

y = 3s2 + rs+ r .

Finally, the differential equation for u(s) is then

u′(s) = 3s2 + rs+ r ,

Integrating and enforcing the initial conditions we find

u = s3 +
1

2
rs2 + rs+ 4 .

From x = 6s+ r we have r = x− 6s. If we put that into the expression for y(s) we find

y = 3s2 + s(x− 6s) + (x− 6s) = −3s2 + (x− 6)s+ x .

Given (x, y) the value of s that satisfies the above must satisfy

−3s2 + (x− 6)s+ x− y = 0 ,

or

s2 +
(

2−
x

3

)

s+
1

3
(y − x) = 0 .

Solving this with the quadratic equation gives

s =
−
(

2− x
3

)

±
√

(

2− x
3

)2 − 4

3
(y − x)

2
.

The fact that we have two signs above (i.e. a ±) results in a different solution when we use
the two different values of s (i.e. s− or s+) to evaluate u(s, r) above.

The book solved for s in terms of r (rather than r in terms of s like I did here). Solving
the equation in that way will still give two roots to the quadratic equation and two different
values for u(x, y).

Problem 7

Our differential equation is given by

ux + uy = u2 ,

with the boundary conditions that

u(x, y) = y on x+ y = 0 .
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Let the initial conditions be parameterized by r and s where r “selects” the characteristic
curve and s “moves” along it so that

x(s; r) = r

y(s; r) = −x = −r

u(s; r) = y = −r .

Now parameterized by s the total derivative of u(s) is given by

du

ds
(x(s), y(s)) =

dx

ds
ux +

dy

ds
uy = u2 .

To match the given differential equation we must have

dx

ds
= 1

dy

ds
= 1

du

ds
= u2 ,

with the initial conditions

x(0) = r

y(0) = −r

u(0) = −r .

Integrating the differential equation for x(s) and applying the initial conditions we get x(s) =
s + r. Integrating the differential equation for y(s) and applying the initial conditions we
get y(s) = s− r. The differential equation for u(s) can be written as

du

u2
= ds .

Integrating both sides gives

−
1

u
= s+ C ,

for a constant C. This means that

u = −
1

s + C
.

The initial conditions on u mean that C must satisfy

u(0) =
−1

C
= −r so C =

1

r
.

Using this we have that u(s) looks like

u(s) =
−1

s + 1

r

=
−r

sr + 1
.
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Thus the solution is represented in parameterized form as

x = s+ r

y = s− r

u = −
r

1 + sr
.

In the above we can solve for r and s in terms of x and y to get

r =
1

2
(x− y)

s =
1

2
(x+ y) .

Using these in the expression for u above we get

u(x, y) =
−1

2
(x− y)

1

2
(x− y)1

2
(x+ y) + 1

=
2(y − x)

4 + (x− y)(x+ y)
.

Lets check that this is a solution. First when x + y = 0 we have x = −y and on that
boundary u(x, y) above becomes

u(x, y) =
2(2y)

4
= y ,

as it should.

Next for the x derivative of u we find

ux =
−2

4 + (x− y)(x+ y)
−

2(y − x)

(4 + (x− y)(x+ y))2
(x+ y + x− y)

=
2

(4 + (x− y)(x+ y))2
(−4 − (x− y)(x+ y)− (y − x)(x+ y)− (y − x)(x− y)) .

For the y derivative of u we find

uy =
2

4 + (x− y)(x+ y)
−

2(y − x)

(4 + (x− y)(x+ y))2
(−(x+ y) + (x− y))

=
2

(4 + (x− y)(x+ y))2
(4 + (x− y)(x+ y) + (y − x)(x+ y)− (y − x)(x− y)) .

Using these we see that

ux + uy =
2

(4 + (x− y)(x+ y))2
[−2(y − x)(x− y)] =

4(y − x)2

(4 + (x− y)(x+ y))2
= u2 ,

as it should.
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Problem 8

Our differential equation is
ux + 2uy = u ,

with u = 1 when y = 2x. Let the characteristics of this problem be parameterized by r

and s where r “selects” the characteristic curve and s “moves” along it. In that coordinate
system, the differential equation can be described as

d

ds
u(x(s), y(s)) = u when

dx

ds
= 1

dy

ds
= 2 ,

and the initial conditions can be described as

x(0) = r

y(0) = 2r

u(0) = 1 .

Integrating the differential equation for x and applying the initial condition gives x = s+ r.
Integrating the differential equation for y and applying the initial condition gives y = 2s+2r.
The differential equation for u is

du

ds
= u ,

or integrating gives
ln(u) = s+ C ,

for some constant C. The initial conditions on u give u(s = 0) = 1 so C = 0 and

ln(u) = s or u = es .

From the above we have

x = s+ r

y = 2(s+ r) .

Notice that we cannot “invert this” to solve for s and r in terms of x and y. This means
that this boundary value problem has no solution.

Problem 9

Our differential equation is
uux + uy = 1 ,
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with u = r on the curve x = r2 and y = r2. Let the characteristic of this problem be
parameterized by r and s where r “selects” the characteristic curve and s “moves” along it.
In that coordinate system, the differential equation can be described as

dx

ds
= u

dy

ds
= 1

du

ds
= 1 .

With initial conditions described as

x(0) = r2

y(0) = 2r

u(0) = r .

Integrating the differential equation for y and applying the initial condition gives y = s+2r.
Integrating the differential equation for u and applying the initial condition gives u = s+ r.
The differential equation for x then takes the form

dx

ds
= u = s+ r ,

or integrating with respect to s (and applying the initial conditions) gives

x(s) =
s2

2
+ rs+ r2 .

Thus the solution is represented in parameterized form as

x =
s2

2
+ rs+ r2

y = s+ 2r

u = s+ r .

Problem 10

Our differential equation is
ux + 2uy = y ,

with u = r2 on the curve x = cos(r) and y = sin(r). Let the characteristic of this problem
be parameterized by r and s where r “selects” the characteristic curve and s “moves” along
it. In that coordinate system, the differential equation can be described as

dx

ds
= 1

dy

ds
= 2

du

ds
= y .
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With initial conditions described as

x(0) = cos(r)

y(0) = sin(r)

u(0) = r2 .

Integrating the differential equation for x and applying the initial condition gives x = s +
cos(r). Integrating the differential equation for y and applying the initial condition gives
y = 2s+ sin(r). The differential equation for u then takes the form

du

ds
= y = 2s+ sin(r) ,

or integrating with respect to s (and applying the initial conditions) gives

u = s2 + s sin(r) + r2 .

Thus the solution is represented in parameterized form as

x = s+ cos(r)

y = 2s+ sin(r)

u = s2 + s sin(r) + r2 .

Problem 11

Our differential equation is
a(x)ux + b(x)uy = 0 ,

where a(x) and b(x) are functions of x only. Let the characteristic of this problem be
parameterized by r and s where r “selects” the characteristic curve and s “moves” along it.
In that coordinate system, the differential equation can be described as

dx

ds
= a(x)

dy

ds
= b(x)

du

ds
= 0 .

With initial conditions described as

x(0) = x0

y(0) = y0

u(0) = u0 .

Integrating the differential equation for u and applying the initial condition gives

u(s) = u0 ,
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Integrating the differential equation for x and y is done by integrating the coupled system

dx

ds
= a(x)

dy

ds
= b(x) ,

with initial conditions of

x(0) = x0

y(0) = y0 .

For all u on the curve (x, y) given by the solution to the above coupled differential equation
we will have u = u0 a constant. I don’t know of a way to get that curve explicitly.

Quasi-Linear Second-Order Equation; Characteristics

Notes on the Text: The Derivation of the Characteristic Curves

Starting with the equation
auxx + buxy + cuyy + e = 0 . (3)

WWX: Working here.
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